Fabrication and Optimization of Primary Batteries Using Ni/Graphene Nanosheet Electrodes

Q2 Pharmacology, Toxicology and Pharmaceutics
Kerista Tarigan, R. Siburian, Erika Arta Mevia Sitorus, Frikson Jony Purba, Yosia Gopas Oetama Manik
{"title":"Fabrication and Optimization of Primary Batteries Using Ni/Graphene Nanosheet Electrodes","authors":"Kerista Tarigan, R. Siburian, Erika Arta Mevia Sitorus, Frikson Jony Purba, Yosia Gopas Oetama Manik","doi":"10.26554/sti.2024.9.2.413-426","DOIUrl":null,"url":null,"abstract":"This study aims to investigate the impact of varying the mass ratio of Ni to Graphene Nano Sheets (GNS) and how incorporating GNS affects the performance of a primary battery prototype (Ni/GNS//electrolyte//GNS). The primary battery prototype was developed using both impregnation and alloy methods. Different mass ratios of Ni/GNS to electrolyte to GNS were tested, including ratios of 1:2:1 (A), 2:2:1 (B), 1:2:2 (C), 2:1:2 (D), and 1:1:2 (E). The characterization of GNS, Ni/GNS, and the primary battery prototype involved using X-Ray Diffraction (XRD) and Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) instruments. A multimeter was employed to measure electrical conductivity, energy density, and power density. A potentiostat/galvanostat was used to measure cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). XRD analysis showed a broad and weak peak at 2θ= 24.32° for GNS, confirming its successful synthesis. Additionally, a peak at 2θ = 43.5° indicated effective deposition of Ni on the GNS surface in Ni/GNS. The SEM-EDX results supported the XRD findings, showing regularly spaced pores and a thin surface layer in GNS. Notably, white spots on the graphene surface in Ni/GNS indicated successful Ni deposition. In terms of electrical conductivity, the highest value was observed in the primary battery prototype for sample D (2:1:2), which measured 1.11 S/cm2. These results were also supported by measurements of energy density and power density in sample D, which achieved the highest values among all samples, with 144,788 Wh/kg and 252,500 W/kg, respectively. Moreover, the CV and EIS measurements remained stable at 0.30 kΩ and 0.88 kΩ, suggesting that GNS could potentially conduct electrons owing to its electrical conductivity.","PeriodicalId":21644,"journal":{"name":"Science and Technology Indonesia","volume":"145 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/sti.2024.9.2.413-426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the impact of varying the mass ratio of Ni to Graphene Nano Sheets (GNS) and how incorporating GNS affects the performance of a primary battery prototype (Ni/GNS//electrolyte//GNS). The primary battery prototype was developed using both impregnation and alloy methods. Different mass ratios of Ni/GNS to electrolyte to GNS were tested, including ratios of 1:2:1 (A), 2:2:1 (B), 1:2:2 (C), 2:1:2 (D), and 1:1:2 (E). The characterization of GNS, Ni/GNS, and the primary battery prototype involved using X-Ray Diffraction (XRD) and Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX) instruments. A multimeter was employed to measure electrical conductivity, energy density, and power density. A potentiostat/galvanostat was used to measure cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). XRD analysis showed a broad and weak peak at 2θ= 24.32° for GNS, confirming its successful synthesis. Additionally, a peak at 2θ = 43.5° indicated effective deposition of Ni on the GNS surface in Ni/GNS. The SEM-EDX results supported the XRD findings, showing regularly spaced pores and a thin surface layer in GNS. Notably, white spots on the graphene surface in Ni/GNS indicated successful Ni deposition. In terms of electrical conductivity, the highest value was observed in the primary battery prototype for sample D (2:1:2), which measured 1.11 S/cm2. These results were also supported by measurements of energy density and power density in sample D, which achieved the highest values among all samples, with 144,788 Wh/kg and 252,500 W/kg, respectively. Moreover, the CV and EIS measurements remained stable at 0.30 kΩ and 0.88 kΩ, suggesting that GNS could potentially conduct electrons owing to its electrical conductivity.
使用镍/石墨烯纳米片电极制造和优化一次电池
本研究旨在探究改变镍与石墨烯纳米片(GNS)的质量比所产生的影响,以及加入 GNS 如何影响原电池原型(镍/GNS//电解质//GNS)的性能。原电池原型采用浸渍法和合金法进行开发。测试了镍/GNS、电解液和 GNS 的不同质量比,包括 1:2:1 (A)、2:2:1 (B)、1:2:2 (C)、2:1:2 (D) 和 1:1:2 (E)。使用 X 射线衍射 (XRD) 和扫描电子显微镜-能量色散 X 射线 (SEM-EDX) 仪器对 GNS、Ni/GNS 和原电池原型进行表征。使用万用表测量电导率、能量密度和功率密度。使用恒电位仪/恒电流仪测量循环伏安法(CV)和电化学阻抗谱(EIS)。XRD 分析表明,GNS 在 2θ= 24.32° 处出现了一个宽而弱的峰值,这证实了它的成功合成。此外,2θ=43.5°处的峰值表明 Ni/GNS 中 Ni 在 GNS 表面的有效沉积。SEM-EDX 结果证实了 XRD 的结论,显示出 GNS 中具有规则间隔的孔隙和较薄的表面层。值得注意的是,Ni/GNS 中石墨烯表面的白点表明镍沉积成功。在导电性方面,样品 D(2:1:2)在原电池原型中的测量值最高,达到 1.11 S/cm2。样品 D 的能量密度和功率密度测量结果也证实了这些结果,它在所有样品中达到了最高值,分别为 144 788 Wh/kg 和 252 500 W/kg。此外,CV 和 EIS 测量值在 0.30 kΩ 和 0.88 kΩ 时保持稳定,这表明 GNS 具有导电性,有可能传导电子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science and Technology Indonesia
Science and Technology Indonesia Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (miscellaneous)
CiteScore
1.80
自引率
0.00%
发文量
72
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信