The Riemann Hypothesis: A Fresh and Experimental Exploration

Sergio Da Silva
{"title":"The Riemann Hypothesis: A Fresh and Experimental Exploration","authors":"Sergio Da Silva","doi":"10.9734/jamcs/2024/v39i41885","DOIUrl":null,"url":null,"abstract":"This research proposes a new approach to the Riemann Hypothesis, focusing on the interplay between prime gaps and the non-trivial zeros of the Riemann Zeta function. Utilizing various statistical models and experimental analysis techniques, three important insights are uncovered: 1) Granger causality tests reveal a predictive relationship in which past non-trivial zeros may predict future prime gaps; 2) Complex, nonlinear interactions between prime gaps and non-trivial zeros are identified, challenging simple linear correlations; and 3) Causal network analysis reveals intricate feedback-loop relationships. These findings contribute to a better understanding of prime number distribution and the Zeta function, opening up novel possibilities for further mathematical research. The study aims to motivate mathematicians towards a proof or disproof of the Riemann Hypothesis.","PeriodicalId":503149,"journal":{"name":"Journal of Advances in Mathematics and Computer Science","volume":"17 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Mathematics and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/jamcs/2024/v39i41885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research proposes a new approach to the Riemann Hypothesis, focusing on the interplay between prime gaps and the non-trivial zeros of the Riemann Zeta function. Utilizing various statistical models and experimental analysis techniques, three important insights are uncovered: 1) Granger causality tests reveal a predictive relationship in which past non-trivial zeros may predict future prime gaps; 2) Complex, nonlinear interactions between prime gaps and non-trivial zeros are identified, challenging simple linear correlations; and 3) Causal network analysis reveals intricate feedback-loop relationships. These findings contribute to a better understanding of prime number distribution and the Zeta function, opening up novel possibilities for further mathematical research. The study aims to motivate mathematicians towards a proof or disproof of the Riemann Hypothesis.
黎曼假说全新的实验探索
本研究针对黎曼假说提出了一种新方法,重点研究质点间隙与黎曼泽塔函数非琐零点之间的相互作用。利用各种统计模型和实验分析技术,我们发现了三个重要启示:1)格兰杰因果检验揭示了一种预测关系,即过去的非琐零点可以预测未来的质数缺口;2)质数缺口和非琐零点之间复杂的非线性相互作用被识别出来,对简单的线性相关关系提出了挑战;3)因果网络分析揭示了错综复杂的反馈回路关系。这些发现有助于更好地理解质数分布和 Zeta 函数,为进一步的数学研究开辟了新的可能性。该研究旨在激励数学家证明或反证黎曼假说。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信