New kink-type solution of the equation for artificial axon

M. A. Knyazev, Т. A. Klimovich
{"title":"New kink-type solution of the equation for artificial axon","authors":"M. A. Knyazev, Т. A. Klimovich","doi":"10.29235/1561-2430-2024-60-1-29-33","DOIUrl":null,"url":null,"abstract":"In the paper a (1 + 1)-dimension equation of motion for the artificial axon is considered. The artificial axon is a dynamical structure like a neuron. They are widely used in biophysics, for example, in studying the physiological processes. A topological non-trivial solution of one-kink type for this equation is constructed in an analytical form. The modified direct Hirota method for solving the nonlinear partial derivatives equations is applied. The special cases are considered for different voltages on the contacts of axon. ","PeriodicalId":516297,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series","volume":"101 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-2430-2024-60-1-29-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper a (1 + 1)-dimension equation of motion for the artificial axon is considered. The artificial axon is a dynamical structure like a neuron. They are widely used in biophysics, for example, in studying the physiological processes. A topological non-trivial solution of one-kink type for this equation is constructed in an analytical form. The modified direct Hirota method for solving the nonlinear partial derivatives equations is applied. The special cases are considered for different voltages on the contacts of axon. 
人工轴突方程的新 "类克 "解法
本文考虑了人工轴突的 (1 + 1) 维运动方程。人工轴突是一种类似神经元的动态结构。它们广泛应用于生物物理学,例如研究生理过程。该方程的拓扑非三维单结型解是以解析形式构建的。应用改进的 Hirota 直接法求解非线性偏导数方程。考虑了轴突触点上不同电压的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信