A comprehensive model for viscoplastic flows in channels with a patterned wall: longitudinal, transverse and oblique flows

H. Rahmani, S. Taghavi
{"title":"A comprehensive model for viscoplastic flows in channels with a patterned wall: longitudinal, transverse and oblique flows","authors":"H. Rahmani, S. Taghavi","doi":"10.1017/jfm.2024.197","DOIUrl":null,"url":null,"abstract":"We develop a comprehensive model for the creeping Poiseuille Bingham flow in channels equipped with a patterned wall, i.e. decorated with grooves or stripes that may represent a superhydrophobic (SH) or a chemically patterned (CP) surface, respectively, with longitudinal, transverse and oblique groove (stripe) orientations with respect to the applied pressure gradient. We rely on the Navier slip law to model the boundary condition on the slippery grooves. We develop semi-analytical, explicit-form and complementary computational fluid dynamics models, with solutions that have reasonable agreement. In contrast to its Newtonian analogue, a distinct solution for the oblique configuration, with an a priori unknown transform matrix, must be developed due to the viscoplastic nonlinear rheology. Our focus is to systematically analyse the effects of the Bingham number (\n \n \n $B$\n \n ), slip number (\n \n \n $b$\n \n ), groove periodicity length (\n \n \n $\\ell$\n \n ), slip area fraction (\n \n \n $\\varphi$\n \n ) and groove orientation angle (\n \n \n $\\theta$\n \n ), on the slip velocities, effective slip length (\n \n \n $\\chi$\n \n ), slip angle difference (\n \n \n $\\theta -s$\n \n ), mixing index (\n \n \n $I_M$\n \n ), flow anisotropy and flow regimes. In particular, we demonstrate that, as \n \n \n $B$\n \n increases, the maximum values of the shear component of \n \n \n $\\chi$\n \n , \n \n \n $\\theta -s$\n \n and \n \n \n $I_M$\n \n occur progressively at smaller values of \n \n \n $\\theta$\n \n , compared with their Newtonian counterparts.","PeriodicalId":505053,"journal":{"name":"Journal of Fluid Mechanics","volume":"26 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/jfm.2024.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a comprehensive model for the creeping Poiseuille Bingham flow in channels equipped with a patterned wall, i.e. decorated with grooves or stripes that may represent a superhydrophobic (SH) or a chemically patterned (CP) surface, respectively, with longitudinal, transverse and oblique groove (stripe) orientations with respect to the applied pressure gradient. We rely on the Navier slip law to model the boundary condition on the slippery grooves. We develop semi-analytical, explicit-form and complementary computational fluid dynamics models, with solutions that have reasonable agreement. In contrast to its Newtonian analogue, a distinct solution for the oblique configuration, with an a priori unknown transform matrix, must be developed due to the viscoplastic nonlinear rheology. Our focus is to systematically analyse the effects of the Bingham number ( $B$ ), slip number ( $b$ ), groove periodicity length ( $\ell$ ), slip area fraction ( $\varphi$ ) and groove orientation angle ( $\theta$ ), on the slip velocities, effective slip length ( $\chi$ ), slip angle difference ( $\theta -s$ ), mixing index ( $I_M$ ), flow anisotropy and flow regimes. In particular, we demonstrate that, as $B$ increases, the maximum values of the shear component of $\chi$ , $\theta -s$ and $I_M$ occur progressively at smaller values of $\theta$ , compared with their Newtonian counterparts.
带有花纹壁的渠道中粘塑性流动的综合模型:纵向、横向和斜向流动
我们为装有图案壁(即装饰有凹槽或条纹,可分别代表超疏水(SH)或化学图案(CP)表面)的水道中的蠕动波伊塞尔-宾汉姆流建立了一个综合模型,凹槽(条纹)的方向相对于所施加的压力梯度有纵向、横向和斜向之分。我们利用纳维滑移定律来模拟滑槽的边界条件。我们开发了半解析、显式和互补计算流体动力学模型,其解决方案具有合理的一致性。与牛顿类似模型不同的是,由于粘塑性非线性流变学的存在,必须为斜面构型开发一个独特的解决方案,该解决方案具有一个先验未知变换矩阵。我们的重点是系统分析宾汉数($B$)、滑移数($b$)、沟槽周期长度($\ell$)、滑移面积分数($\varphi$)和沟槽定向角($\theta$)对滑移速度、有效滑移长度($\chi$)、滑移角差($\theta -s$)、混合指数($I_M$)、流动各向异性和流动制度的影响。特别是,我们证明了随着 $B$ 的增加,与牛顿对应值相比,$\theta$、$\theta -s$ 和 $I_M$ 的剪切分量的最大值逐渐出现在较小的值\theta$上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信