Sayel M. Fayyad, Aiman Al Alawin, S. Abu-Ein, Zaid Abulghanam, Abdel Salam Alsabag, Mohannad O. Rawashdeh, Muntaser Momani, Waleed Momani
{"title":"Aerodynamics Analysis Comparison between NACA 4412 and NREL S823 Airfoils","authors":"Sayel M. Fayyad, Aiman Al Alawin, S. Abu-Ein, Zaid Abulghanam, Abdel Salam Alsabag, Mohannad O. Rawashdeh, Muntaser Momani, Waleed Momani","doi":"10.37394/232013.2024.19.13","DOIUrl":null,"url":null,"abstract":"This paper presents a study of the aerodynamics of a wing or bluff bodies and compares different wing types' behavior against aerodynamic forces. NACA 4412 and NERL S823 airfoils will be analyzed numerically using the ANSYS simulation. The methodology used in this paper depends on collecting data from the last studies, studying the analyzed airfoil models, and constructing an analytical model to show the aerodynamic effects on NACA 4412 and NERL S823 airfoils, and find the total solution. A comparison between NACA 4412 airfoil and NREL'S S823 is presented. It was found that the lift coefficient for NACA 4412 values is higher than that of NREL S823 airfoil but for NACA 4412 such values are decreasing as the angle of attack (AoA) is increasing till 8ᵒ of AoA after that Cl values are increasing slightly. In contrast, for NREL S823 airfoil the values of lift coefficient (Cl) are increasing with AoA till 8ᵒ after that they become constant or slightly decreasing, while for drag coefficient, it can be noticed that values of drag coefficient (Cd) for NACA 4412 are lower than that of NREL S823 airfoils and for all values of angle of attack, also values for both airfoils are decreasing with AoA till 8° and then slightly increased.","PeriodicalId":39418,"journal":{"name":"WSEAS Transactions on Fluid Mechanics","volume":"45 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS Transactions on Fluid Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232013.2024.19.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a study of the aerodynamics of a wing or bluff bodies and compares different wing types' behavior against aerodynamic forces. NACA 4412 and NERL S823 airfoils will be analyzed numerically using the ANSYS simulation. The methodology used in this paper depends on collecting data from the last studies, studying the analyzed airfoil models, and constructing an analytical model to show the aerodynamic effects on NACA 4412 and NERL S823 airfoils, and find the total solution. A comparison between NACA 4412 airfoil and NREL'S S823 is presented. It was found that the lift coefficient for NACA 4412 values is higher than that of NREL S823 airfoil but for NACA 4412 such values are decreasing as the angle of attack (AoA) is increasing till 8ᵒ of AoA after that Cl values are increasing slightly. In contrast, for NREL S823 airfoil the values of lift coefficient (Cl) are increasing with AoA till 8ᵒ after that they become constant or slightly decreasing, while for drag coefficient, it can be noticed that values of drag coefficient (Cd) for NACA 4412 are lower than that of NREL S823 airfoils and for all values of angle of attack, also values for both airfoils are decreasing with AoA till 8° and then slightly increased.
期刊介绍:
WSEAS Transactions on Fluid Mechanics publishes original research papers relating to the studying of fluids. We aim to bring important work to a wide international audience and therefore only publish papers of exceptional scientific value that advance our understanding of this particular area. The research presented must transcend the limits of case studies, while both experimental and theoretical studies are accepted. It is a multi-disciplinary journal and therefore its content mirrors the diverse interests and approaches of scholars involved with multiphase flow, boundary layer flow, material properties, wave modelling and related areas. We also welcome scholarly contributions from officials with government agencies, international agencies, and non-governmental organizations.