{"title":"Fourier series for the multidimensional-matrix functions of the vector variable","authors":"V. S. Mukha","doi":"10.29235/1561-2430-2024-60-1-15-28","DOIUrl":null,"url":null,"abstract":"In the article, the theory of the Fourier series on the orthogonal multidimensional-matrix (mdm) polynomials is developed. The known results from the theory of the orthogonal polynomials of the vector variable and the Fourier series are given and the new results are presented. In particular, the known results of the Fourier series theory are extended to the case of the mdm functions, what allows us to solve more general approximation problems. The general case of the approximation of the mdm function of the vector argument by the Fourier series on the orthogonal mdm polynomials is realized programmatically as the program function and its efficiency is confirmed. The analytical expressions for the coefficients of the second degree orthogonal polynomials and Fourier series for possible analytical studies are obtained.","PeriodicalId":516297,"journal":{"name":"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series","volume":"65 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29235/1561-2430-2024-60-1-15-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the article, the theory of the Fourier series on the orthogonal multidimensional-matrix (mdm) polynomials is developed. The known results from the theory of the orthogonal polynomials of the vector variable and the Fourier series are given and the new results are presented. In particular, the known results of the Fourier series theory are extended to the case of the mdm functions, what allows us to solve more general approximation problems. The general case of the approximation of the mdm function of the vector argument by the Fourier series on the orthogonal mdm polynomials is realized programmatically as the program function and its efficiency is confirmed. The analytical expressions for the coefficients of the second degree orthogonal polynomials and Fourier series for possible analytical studies are obtained.