Differentiation properties of class \(L^{1}([0,1)^{2})\) with respect to two different bases of rectangles

IF 0.6 Q3 MATHEMATICS
Michihiro Hirayama, Davit Karagulyan
{"title":"Differentiation properties of class \\(L^{1}([0,1)^{2})\\) with respect to two different bases of rectangles","authors":"Michihiro Hirayama,&nbsp;Davit Karagulyan","doi":"10.1007/s44146-024-00127-9","DOIUrl":null,"url":null,"abstract":"<div><p>The Lebesgue differentiation theorem claims that the integral averages of <span>\\(f\\in L^{1}([0,1)^2)\\)</span> with respect to the family of axis-parallel <i>squares</i> converge almost everywhere on <span>\\([0,1)^2\\)</span>. On the other hand, it is a well known result by Saks that there exist a function <span>\\(f \\in L^{1}([0,1)^2)\\)</span> such that its integral averages with respect to the family of axis-parallel <i>rectangles</i> diverge everywhere on <span>\\([0,1)^2\\)</span>. In this paper, we address the following question: assume we have two different collections of rectangles; under which conditions does there exist a function <span>\\(f \\in L^{1}([0,1)^2)\\)</span> so that its integral averages converge with respect to one collection and diverge with respect to another? More specifically, let <span>\\({\\varvec{C}}, {\\varvec{D}} \\subset (0,1]\\)</span> and consider rectangles with side lengths respectively in <span>\\({\\varvec{C}}\\)</span> and <span>\\({\\varvec{D}}\\)</span>. We show that if the sets <span>\\({\\varvec{C}}\\)</span> and <span>\\({\\varvec{D}}\\)</span> occasionally become sufficiently “far” from each other, then such a function can be constructed. We also show that in the class of positive functions our condition is necessary for such a function to exist.</p></div>","PeriodicalId":46939,"journal":{"name":"ACTA SCIENTIARUM MATHEMATICARUM","volume":"91 1-2","pages":"121 - 152"},"PeriodicalIF":0.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACTA SCIENTIARUM MATHEMATICARUM","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s44146-024-00127-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Lebesgue differentiation theorem claims that the integral averages of \(f\in L^{1}([0,1)^2)\) with respect to the family of axis-parallel squares converge almost everywhere on \([0,1)^2\). On the other hand, it is a well known result by Saks that there exist a function \(f \in L^{1}([0,1)^2)\) such that its integral averages with respect to the family of axis-parallel rectangles diverge everywhere on \([0,1)^2\). In this paper, we address the following question: assume we have two different collections of rectangles; under which conditions does there exist a function \(f \in L^{1}([0,1)^2)\) so that its integral averages converge with respect to one collection and diverge with respect to another? More specifically, let \({\varvec{C}}, {\varvec{D}} \subset (0,1]\) and consider rectangles with side lengths respectively in \({\varvec{C}}\) and \({\varvec{D}}\). We show that if the sets \({\varvec{C}}\) and \({\varvec{D}}\) occasionally become sufficiently “far” from each other, then such a function can be constructed. We also show that in the class of positive functions our condition is necessary for such a function to exist.

Abstract Image

类 $$L^{1}([0,1)^{2})$$ 关于两个不同矩形基的微分性质
勒贝格微分定理声称\(f\in L^{1}([0,1)^2)\)对平行轴的正方形族的积分平均几乎在\([0,1)^2\)上处处收敛。另一方面,Saks的一个众所周知的结果是,存在一个函数\(f \in L^{1}([0,1)^2)\),使得它对轴平行矩形族的积分平均值在\([0,1)^2\)上处处发散。在本文中,我们解决以下问题:假设我们有两个不同的矩形集合;在什么条件下存在一个函数\(f \in L^{1}([0,1)^2)\)使得它的积分平均值相对于一个集合收敛而相对于另一个集合发散?更具体地说,让\({\varvec{C}}, {\varvec{D}} \subset (0,1]\)和考虑边长分别为\({\varvec{C}}\)和\({\varvec{D}}\)的矩形。我们证明,如果集合\({\varvec{C}}\)和\({\varvec{D}}\)偶尔变得彼此足够“远”,则可以构造这样的函数。我们还证明了在正函数类中,我们的条件是这样一个函数存在的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
39
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信