{"title":"INFLUENCE OF SPRAY DISTANCE ON THE POROSITY OF Ni-BASED AMORPHOUS COATINGS: NUMERICAL SIMULATION AND EXPERIMENT","authors":"Rui Wang, Deming Wang, Nianchu Wu","doi":"10.17222/mit.2023.1002","DOIUrl":null,"url":null,"abstract":"The influence of injection distance on the porosity of Ni-based amorphous coatings (AMCs) prepared with a high-velocity air fuel (HVAF) process is discussed based on a numerical analysis and experimental methods. A computational fluid dynamics model was established to demonstrate the gas flow field and behavior of particles in flight at different spraying distances during HVAF spraying. When analyzing the changes in the particle velocity and temperature, the spraying distance is less than 30 µm. The velocity and temperature changes of small particles have a significant impact, and the optimal spray distance (350 mm) for obtaining a low porosity coating is predicted. The calculation was validated experimentally by producing a Ni-based AMC with a low porosity (1.87 %) that was manufactured using the predicted HVAF optimal spraying distance.","PeriodicalId":18258,"journal":{"name":"Materiali in tehnologije","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materiali in tehnologije","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.17222/mit.2023.1002","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The influence of injection distance on the porosity of Ni-based amorphous coatings (AMCs) prepared with a high-velocity air fuel (HVAF) process is discussed based on a numerical analysis and experimental methods. A computational fluid dynamics model was established to demonstrate the gas flow field and behavior of particles in flight at different spraying distances during HVAF spraying. When analyzing the changes in the particle velocity and temperature, the spraying distance is less than 30 µm. The velocity and temperature changes of small particles have a significant impact, and the optimal spray distance (350 mm) for obtaining a low porosity coating is predicted. The calculation was validated experimentally by producing a Ni-based AMC with a low porosity (1.87 %) that was manufactured using the predicted HVAF optimal spraying distance.
期刊介绍:
The journal MATERIALI IN TEHNOLOGIJE/MATERIALS AND TECHNOLOGY is a scientific journal, devoted to original papers and review scientific papers concerned with the areas of fundamental and applied science and technology. Topics of particular interest include metallic materials, inorganic materials, polymers, vacuum technique and lately nanomaterials.