Trails in arc-colored digraphs avoiding forbidden transitions

IF 1 Q1 MATHEMATICS
Carlos Vilchis-Alfaro, Hortensia Galeana-S´anchez
{"title":"Trails in arc-colored digraphs avoiding forbidden transitions","authors":"Carlos Vilchis-Alfaro, Hortensia Galeana-S´anchez","doi":"10.47443/dml.2023.190","DOIUrl":null,"url":null,"abstract":"Let H be a digraph possibly with loops. Let D be a digraph without loops. An H -coloring of D is a function c : A ( D ) → V ( H ) . We say that D is an H -colored digraph whenever we are taking a fixed H -coloring of D . A trail W = ( v 0 , e 0 , v 1 , e 1 , v 2 , . . . , v n − 1 , e n − 1 , v n ) in D is an H -trail if and only if ( c ( e i ) , c ( e i +1 )) is an arc in H for every i ∈ { 0 , . . . , n − 2 } . Whenever the vertices of an H -trail are pairwise different, we say that it is an H -path. In this paper, we study the problem of finding s − t H -trail in H -colored digraphs. First, we prove that finding an H -trail starting with the arc e and ending at arc f can be done in polynomial time. As a consequence, we give a polynomial time algorithm to find the shortest H -trail from a vertex s to a vertex t (if it exists). Moreover, we obtain a Menger-type theorem for H -trails. As a consequence, we show that the problem of maximizing the number of arc disjoint s − t H -trails in D can be solved in polynomial time. Although finding an H -path between two given vertices is an NP-problem, it becomes a polynomial time problem in the case when H is a reflexive and transitive digraph.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let H be a digraph possibly with loops. Let D be a digraph without loops. An H -coloring of D is a function c : A ( D ) → V ( H ) . We say that D is an H -colored digraph whenever we are taking a fixed H -coloring of D . A trail W = ( v 0 , e 0 , v 1 , e 1 , v 2 , . . . , v n − 1 , e n − 1 , v n ) in D is an H -trail if and only if ( c ( e i ) , c ( e i +1 )) is an arc in H for every i ∈ { 0 , . . . , n − 2 } . Whenever the vertices of an H -trail are pairwise different, we say that it is an H -path. In this paper, we study the problem of finding s − t H -trail in H -colored digraphs. First, we prove that finding an H -trail starting with the arc e and ending at arc f can be done in polynomial time. As a consequence, we give a polynomial time algorithm to find the shortest H -trail from a vertex s to a vertex t (if it exists). Moreover, we obtain a Menger-type theorem for H -trails. As a consequence, we show that the problem of maximizing the number of arc disjoint s − t H -trails in D can be solved in polynomial time. Although finding an H -path between two given vertices is an NP-problem, it becomes a polynomial time problem in the case when H is a reflexive and transitive digraph.
避免禁止转换的弧色数字图中的轨迹
让 H 是一个可能有循环的数字图。让 D 是一个不带循环的数图。D 的 H 着色是一个函数 c : A ( D ) → V ( H ) 。只要我们对 D 进行固定的 H - 着色,我们就说 D 是一个 H - 着色的数图。D 中的一条轨迹 W = ( v 0 , e 0 , v 1 , e 1 , v 2 , ... , v n - 1 , e n - 1 , v n ) 是一条 H -轨迹,当且仅当 ( c ( e i ) , c ( e i +1 ) ) 是 H 中的一条弧,对于每个 i∈ { 0 , ... , n - 2 } 。, n - 2 }.只要 H 路径的顶点成对地不同,我们就说它是一条 H 路径。本文将研究在 H 色数字图中找出 s - t 条 H 路径的问题。首先,我们证明从弧 e 开始到弧 f 结束的 H 路径的确定可以在多项式时间内完成。因此,我们给出了一种多项式时间算法,可以找出从顶点 s 到顶点 t 的最短 H - 轨迹(如果存在的话)。此外,我们还得到了 H 轨迹的门格尔定理。因此,我们证明了在多项式时间内可以求解最大化 D 中弧线不相交的 s - t H - 轨迹数量的问题。虽然在两个给定顶点之间找出一条 H 路径是一个 NP 问题,但当 H 是一个重外延和传递图时,它就变成了一个多项式时间问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信