Rock Breaking Mechanism and Process Optimisation of Jet Cutting Basic Roof Rock under Submerged Jet Condition

IF 1.2 4区 工程技术 Q3 MINING & MINERAL PROCESSING
Lei Shi, Weiyong Lu, Dong Lv
{"title":"Rock Breaking Mechanism and Process Optimisation of Jet Cutting Basic Roof Rock under Submerged Jet Condition","authors":"Lei Shi, Weiyong Lu, Dong Lv","doi":"10.24425/ams.2024.149831","DOIUrl":null,"url":null,"abstract":"The destruction of rock under the condition of a close submerged jet has become a hot topic of scientific research and engineering application in the past decade. With the unremitting efforts of a large number of experts and scholars around the world, gratifying progress has been made in the research of computational fluid dynamics (CFD) on the internal and external flow fields of the jet nozzle, the theoretical derivation of rock mechanics on the fracture initiation and propagation criteria of hydraulic fracturing, and the numerical simulation of jet erosion mechanism under the coupling of fluid and solid fields, however, for the rock mechanics hydraulic fracturing cutting engineering scale of non-oil drilling fracturing technology, the research on the fluid-solid coupling boundary conditions of fracturing fluid and hard dense rock under the flow state conditions of the submerged field inside and outside the borehole is not sufficient. In the calculation of the fluid-solid coupling boundary flow field under the non-submerged jet state, the control equation with Reynolds number between 2300-4000 shall be selected, while it belongs to the laminar flow state in the stage of hole sealing and pressurised fracturing. Therefore, Von-Mises equivalent plastic stress is selected in the mechanical model to calibrate the failure state of the rock-solid boundary, and the control equations of laminar flow and turbulent flow are selected to calibrate the fluid boundary. The mechanism of different stages of rock breaking by hydraulic fracturing jet can be further analysed in detail, and Comsol 6.0 multi-physical field simulation software is selected for verification. The research results will help deepen the understanding of rock breaking mechanism by jet and optimise the selection of parameters for field construction.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.24425/ams.2024.149831","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 0

Abstract

The destruction of rock under the condition of a close submerged jet has become a hot topic of scientific research and engineering application in the past decade. With the unremitting efforts of a large number of experts and scholars around the world, gratifying progress has been made in the research of computational fluid dynamics (CFD) on the internal and external flow fields of the jet nozzle, the theoretical derivation of rock mechanics on the fracture initiation and propagation criteria of hydraulic fracturing, and the numerical simulation of jet erosion mechanism under the coupling of fluid and solid fields, however, for the rock mechanics hydraulic fracturing cutting engineering scale of non-oil drilling fracturing technology, the research on the fluid-solid coupling boundary conditions of fracturing fluid and hard dense rock under the flow state conditions of the submerged field inside and outside the borehole is not sufficient. In the calculation of the fluid-solid coupling boundary flow field under the non-submerged jet state, the control equation with Reynolds number between 2300-4000 shall be selected, while it belongs to the laminar flow state in the stage of hole sealing and pressurised fracturing. Therefore, Von-Mises equivalent plastic stress is selected in the mechanical model to calibrate the failure state of the rock-solid boundary, and the control equations of laminar flow and turbulent flow are selected to calibrate the fluid boundary. The mechanism of different stages of rock breaking by hydraulic fracturing jet can be further analysed in detail, and Comsol 6.0 multi-physical field simulation software is selected for verification. The research results will help deepen the understanding of rock breaking mechanism by jet and optimise the selection of parameters for field construction.
浸没式喷射条件下喷射切割碱性屋顶岩的破岩机理与工艺优化
近十年来,近潜射流条件下的岩石破坏已成为科学研究和工程应用的热点课题。在世界范围内众多专家学者的不懈努力下,计算流体力学(CFD)对射流喷嘴内外流场的研究、岩石力学对水力压裂裂缝萌发和传播准则的理论推导以及流固场耦合下射流侵蚀机理的数值模拟等方面都取得了可喜的进展、然而,针对非石油钻井压裂技术的岩石力学水力压裂切割工程规模,对压裂液与坚硬致密岩石在井眼内外潜流场流动状态条件下的流固耦合边界条件的研究还很不够。在计算非浸没射流状态下的流固耦合边界流场时,应选用雷诺数在2300-4000之间的控制方程,而这属于封孔加压压裂阶段的层流状态。因此,在力学模型中选用 Von-Mises 等效塑性应力来校核岩固边界的破坏状态,选用层流和紊流控制方程来校核流体边界。可进一步详细分析水力压裂射流不同阶段的破岩机理,并选用 Comsol 6.0 多物理场模拟软件进行验证。研究成果将有助于加深对射流破岩机理的理解,优化现场施工参数的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Mining Sciences
Archives of Mining Sciences 工程技术-矿业与矿物加工
CiteScore
2.40
自引率
16.70%
发文量
0
审稿时长
20 months
期刊介绍: Archives of Mining Sciences (AMS) is concerned with original research, new developments and case studies in mining sciences and energy, civil engineering and environmental engineering. The journal provides an international forum for the publication of high quality research results in: mining technologies, mineral processing, stability of mine workings, mining machine science, ventilation systems, rock mechanics, termodynamics, underground storage of oil and gas, mining and engineering geology, geotechnical engineering, tunnelling, design and construction of tunnels, design and construction on mining areas, mining geodesy, environmental protection in mining, revitalisation of postindustrial areas. Papers are welcomed on all relevant topics and especially on theoretical developments, analytical methods, numerical methods, rock testing, site investigation, and case studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信