A-stable Two Derivative Mono-Implicit Runge-Kutta Methods for ODEs

I. B. Aihie, R. Okuonghae
{"title":"A-stable Two Derivative Mono-Implicit Runge-Kutta Methods for ODEs","authors":"I. B. Aihie, R. Okuonghae","doi":"10.34198/ejms.14324.565588","DOIUrl":null,"url":null,"abstract":"An A-stable Two Derivative Mono Implicit Runge-Kutta (ATDMIRK) method is considered herein for the numerical solution of initial value problems (IVPs) in ordinary differential equation (ODEs). The methods are of high-order A-stable for $p=q=\\lbrace 2s+1\\rbrace _{s=2}^{7}\\ $ The $p$, $q$ and $s$ are the order of the input, output and the stages of the methods respectively. The numerical results affirm the superior accuracy of the newly develop methods compare to the existing ones.","PeriodicalId":482741,"journal":{"name":"Earthline Journal of Mathematical Sciences","volume":"71 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthline Journal of Mathematical Sciences","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.34198/ejms.14324.565588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An A-stable Two Derivative Mono Implicit Runge-Kutta (ATDMIRK) method is considered herein for the numerical solution of initial value problems (IVPs) in ordinary differential equation (ODEs). The methods are of high-order A-stable for $p=q=\lbrace 2s+1\rbrace _{s=2}^{7}\ $ The $p$, $q$ and $s$ are the order of the input, output and the stages of the methods respectively. The numerical results affirm the superior accuracy of the newly develop methods compare to the existing ones.
用于 ODEs 的 A 稳定双衍单隐式 Runge-Kutta 方法
本文研究了一种 A 级稳定的二阶微分单隐式 Runge-Kutta (ATDMIRK) 方法,用于常微分方程中初值问题的数值求解。这些方法在 $p=q=\lbrace 2s+1\rbrace _{s=2}^{7}\ $ 时具有高阶 A 级稳定性。数值结果表明,与现有方法相比,新开发的方法具有更高的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信