Modelling deformable boundary by spherical particle for normal contact

Mechanics Pub Date : 2024-04-04 DOI:10.5755/j02.mech.36219
R. Jasevičius, R. Kačianauskas
{"title":"Modelling deformable boundary by spherical particle for normal contact","authors":"R. Jasevičius, R. Kačianauskas","doi":"10.5755/j02.mech.36219","DOIUrl":null,"url":null,"abstract":"The normal contact of the elastic spherical particle with deformable boundary is investigated in terms of the Discrete Element Method (DEM). The particle of the prescribed radius is moving under gravity and the initial velocity. The deformable boundary is treated as rigidly fixed spherical particle with variable elasticity modulus and variable radius. The limit case, approaching the infinite radius presents an elastic half-space, while increasing of the elasticity modulus presents the rigid boundary, respectively. \nThe linear model and the nonlinear Hertz contact model used in the discrete element method are investigated numerically by applying the 5th-order Gear’s  predictorcorrector integration scheme. The numerical model is tested by comparing it with analytical solution. The time variations of the particle positions, velocities and  accelerations are presented. On the basis of simulation results the limit values of the boundary particle parameters are evaluated and recommendations for the boundary  article parameters required in DEM simulation are drown.","PeriodicalId":511970,"journal":{"name":"Mechanics","volume":"5 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5755/j02.mech.36219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The normal contact of the elastic spherical particle with deformable boundary is investigated in terms of the Discrete Element Method (DEM). The particle of the prescribed radius is moving under gravity and the initial velocity. The deformable boundary is treated as rigidly fixed spherical particle with variable elasticity modulus and variable radius. The limit case, approaching the infinite radius presents an elastic half-space, while increasing of the elasticity modulus presents the rigid boundary, respectively. The linear model and the nonlinear Hertz contact model used in the discrete element method are investigated numerically by applying the 5th-order Gear’s  predictorcorrector integration scheme. The numerical model is tested by comparing it with analytical solution. The time variations of the particle positions, velocities and  accelerations are presented. On the basis of simulation results the limit values of the boundary particle parameters are evaluated and recommendations for the boundary  article parameters required in DEM simulation are drown.
用球形粒子为正常接触的可变形边界建模
本文采用离散元法(DEM)研究了具有可变形边界的弹性球形粒子的法向接触问题。规定半径的粒子在重力和初速度作用下运动。可变形边界被视为具有可变弹性模量和可变半径的刚性固定球形质点。在接近无限半径的极限情况下,会出现弹性半空间,而弹性模量增大则会出现刚性边界。离散元方法中使用的线性模型和非线性赫兹接触模型是通过五阶 Gear's predictorcorctor 积分方案进行数值研究的。通过与分析解进行比较,对数值模型进行了测试。文中给出了粒子位置、速度和加速度的时间变化。在模拟结果的基础上,对边界粒子参数的极限值进行了评估,并对 DEM 模拟中所需的边界条件参数提出了建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信