Some necessary conditions for graphs with extremal connected 2-domination number

IF 1 Q1 MATHEMATICS
Piyawat Wongthongcue, Chalermpong Worawannotai
{"title":"Some necessary conditions for graphs with extremal connected 2-domination number","authors":"Piyawat Wongthongcue, Chalermpong Worawannotai","doi":"10.47443/dml.2023.230","DOIUrl":null,"url":null,"abstract":"Let G be a graph with no multiple edges and loops. A subset S of the vertex set of G is a dominating set of G if every vertex in V ( G ) \\ S is adjacent to at least one vertex of S . A connected k -dominating set of G is a subset S of the vertex set V ( G ) such that every vertex in V ( G ) \\ S has at least k neighbors in S and the subgraph G [ S ] is connected. The domination number of G is the number of vertices in a minimum dominating set of G , denoted by γ ( G ) . The connected k -domination number of G , denoted by γ ck ( G ) , is the minimum cardinality of a connected k -dominating set of G . For k = 1 , we simply write γ c ( G ) . It is known that the bounds γ c 2 ( G ) (cid:62) γ ( G ) + 1 and γ c 2 ( G ) (cid:62) γ c ( G ) + 1 are sharp. In this research article, we present the necessary condition of the connected graphs G with γ c 2 ( G ) = γ ( G ) + 1 and the necessary condition of the connected graphs G with γ c 2 ( G ) = γ c ( G )+1 . Moreover, we present a graph construction that takes in any connected graph with r vertices and gives a graph G with γ c 2 ( G ) = r , γ c ( G ) = r − 1 , and γ ( G ) ∈ { r − 1 , r −","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2023.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a graph with no multiple edges and loops. A subset S of the vertex set of G is a dominating set of G if every vertex in V ( G ) \ S is adjacent to at least one vertex of S . A connected k -dominating set of G is a subset S of the vertex set V ( G ) such that every vertex in V ( G ) \ S has at least k neighbors in S and the subgraph G [ S ] is connected. The domination number of G is the number of vertices in a minimum dominating set of G , denoted by γ ( G ) . The connected k -domination number of G , denoted by γ ck ( G ) , is the minimum cardinality of a connected k -dominating set of G . For k = 1 , we simply write γ c ( G ) . It is known that the bounds γ c 2 ( G ) (cid:62) γ ( G ) + 1 and γ c 2 ( G ) (cid:62) γ c ( G ) + 1 are sharp. In this research article, we present the necessary condition of the connected graphs G with γ c 2 ( G ) = γ ( G ) + 1 and the necessary condition of the connected graphs G with γ c 2 ( G ) = γ c ( G )+1 . Moreover, we present a graph construction that takes in any connected graph with r vertices and gives a graph G with γ c 2 ( G ) = r , γ c ( G ) = r − 1 , and γ ( G ) ∈ { r − 1 , r −
具有极值连通 2-domination 数的图的一些必要条件
设 G 是一个没有多重边和循环的图。如果 V ( G ) \ S 中的每个顶点都至少与 S 中的一个顶点相邻,那么 G 的顶点集的子集 S 就是 G 的支配集。G 的连通 k 支配集是顶点集 V ( G ) 的子集 S,使得 V ( G ) 中的每个顶点在 S 中至少有 k 个邻接点,并且子图 G [ S ] 是连通的。G 的支配数是 G 的最小支配集中的顶点数,用 γ ( G ) 表示。G 的连通 k 支配数用 γ ck ( G ) 表示,是 G 的连通 k 支配集的最小卡片度。对于 k = 1 ,我们简单地写为 γ c ( G ) .众所周知,边界 γ c 2 ( G ) (cid:62) γ ( G ) + 1 和 γ c 2 ( G ) (cid:62) γ c ( G ) + 1 是尖锐的。在这篇研究文章中,我们提出了 γ c 2 ( G ) = γ ( G ) + 1 的连通图 G 的必要条件,以及 γ c 2 ( G ) = γ c ( G )+1 的连通图 G 的必要条件。此外,我们还提出了一种图构造,它可以接收任何具有 r 个顶点的连通图,并给出一个具有 γ c 2 ( G ) = r , γ c ( G ) = r - 1 , 且 γ ( G ) ∈ { r - 1 , r - 1 , γ c ( G ) + 1 的图 G。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信