{"title":"Audiences, automation, and AI: From structured news to language models","authors":"David Caswell","doi":"10.1002/aaai.12168","DOIUrl":null,"url":null,"abstract":"<p>The appearance of large language models (LLMs) and other forms of generative AI portend a new era of disruption and innovation for the news industry, this time focused on the production and consumption of news rather than on its distribution. Large news organizations, however, may be surprisingly well-prepared for at least some of this disruption because of earlier innovation work on automating workflows for personalized content and formats using structured techniques. This article reviews this work and uses examples from the British Broadcasting Corporation (BBC) and other large news providers to show how LLMs have recently been successfully applied to addressing significant barriers to the deployment of structured approaches in production, and how innovation using structured techniques has more generally framed significant editorial and product challenges that might now be more readily addressed using generative AI. Using the BBC's next-generation authoring and publishing stack as an example, the article also discusses how earlier innovation work has influenced the design of flexible infrastructure that can accommodate uncertainty in audience behavior and editorial workflows – capabilities that are likely to be well suited to the fast-approaching AI-mediated news ecosystem.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 2","pages":"174-186"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12168","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12168","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The appearance of large language models (LLMs) and other forms of generative AI portend a new era of disruption and innovation for the news industry, this time focused on the production and consumption of news rather than on its distribution. Large news organizations, however, may be surprisingly well-prepared for at least some of this disruption because of earlier innovation work on automating workflows for personalized content and formats using structured techniques. This article reviews this work and uses examples from the British Broadcasting Corporation (BBC) and other large news providers to show how LLMs have recently been successfully applied to addressing significant barriers to the deployment of structured approaches in production, and how innovation using structured techniques has more generally framed significant editorial and product challenges that might now be more readily addressed using generative AI. Using the BBC's next-generation authoring and publishing stack as an example, the article also discusses how earlier innovation work has influenced the design of flexible infrastructure that can accommodate uncertainty in audience behavior and editorial workflows – capabilities that are likely to be well suited to the fast-approaching AI-mediated news ecosystem.
期刊介绍:
AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.