Some results on generalized Cesàro stable of Janowski function

IF 0.9 Q2 MATHEMATICS
M. P. Jeyaraman, T. G. Bhaskar
{"title":"Some results on generalized Cesàro stable of Janowski function","authors":"M. P. Jeyaraman,&nbsp;T. G. Bhaskar","doi":"10.1007/s13370-024-01182-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(g_1\\)</span> and <span>\\(g_2 \\)</span> be any two analytic functions defined in the unit disc which are normalized by the condition <span>\\(g_1(0)=1=g_2(0)\\)</span> and <span>\\(\\sigma _n^{b-1,c}(z)\\)</span> be the <i>n</i> <i>th</i> Cesàro mean of type <span>\\((b-1,c)\\)</span> for <span>\\(1+b&gt;c&gt;0\\)</span>. Then <span>\\(g_1\\)</span> is generalized Cesàro stable with respect to <span>\\(g_2\\)</span>, whenever </p><div><div><span>$$\\begin{aligned} \\dfrac{\\sigma _n^{b-1,c}(g_1,z)}{g_1(z)}\\prec \\dfrac{1}{g_2(z)}\\quad \\ (z \\in \\Delta ,\\ n \\in \\mathbb {N}_0), \\end{aligned}$$</span></div></div><p>where <span>\\(\\sigma _n^{b-1,c}(g,z) = \\dfrac{1}{B_n} \\sum _{j=0}^{n} B_{n-j} b_j z^j = \\sigma _n^{b-1,c}(z) * g(z)\\)</span>. The main aim of this article is to prove that <span>\\(\\left( {(Az+1)}/{(Bz+1)}\\right) ^\\eta \\)</span> is generalized Cesàro stable with respect to <span>\\((1/(Bz+1)^{\\eta })\\)</span> but not with respect to itself for <span>\\(-1 \\le B &lt; A \\le 0\\)</span> and <span>\\(0&lt;\\eta \\le 1\\)</span>. As an application, we obtain new and existing results on Cesàro stability and stability.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":"35 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01182-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(g_1\) and \(g_2 \) be any two analytic functions defined in the unit disc which are normalized by the condition \(g_1(0)=1=g_2(0)\) and \(\sigma _n^{b-1,c}(z)\) be the n th Cesàro mean of type \((b-1,c)\) for \(1+b>c>0\). Then \(g_1\) is generalized Cesàro stable with respect to \(g_2\), whenever

$$\begin{aligned} \dfrac{\sigma _n^{b-1,c}(g_1,z)}{g_1(z)}\prec \dfrac{1}{g_2(z)}\quad \ (z \in \Delta ,\ n \in \mathbb {N}_0), \end{aligned}$$

where \(\sigma _n^{b-1,c}(g,z) = \dfrac{1}{B_n} \sum _{j=0}^{n} B_{n-j} b_j z^j = \sigma _n^{b-1,c}(z) * g(z)\). The main aim of this article is to prove that \(\left( {(Az+1)}/{(Bz+1)}\right) ^\eta \) is generalized Cesàro stable with respect to \((1/(Bz+1)^{\eta })\) but not with respect to itself for \(-1 \le B < A \le 0\) and \(0<\eta \le 1\). As an application, we obtain new and existing results on Cesàro stability and stability.

关于扬诺夫斯基函数广义塞萨罗稳定的一些结果
让\(g_1)和\(g_2)是定义在单位圆盘上的任意两个解析函数,它们通过条件\(g_1(0)=1=g_2(0)\)归一化,并且\(\sigma _n^{b-1,c}(z)\)是\(1+b>c>0\)的\((b-1,c)\)类型的第n个Cesàro均值。那么相对于 \(g_2\),只要 $$\begin{aligned} , \(g_1)就是广义 Cesàro 稳定的。\dfrac ({sigma _n^{b-1,c}(g_1,z)}{g_1(z)}prec (dfrac{1}{g_2(z)}\quad (z 在\Delta ,\n在\mathbb {N}_0),end{aligned}$$其中 ((sigma _n^{b-1,c}(g,z) = \dfrac{1}{B_n}\sum _{j=0}^{n}B_{n-j} b_j z^j = \sigma _n^{b-1,c}(z) * g(z)\).本文的主要目的是证明在(-1 \le B < A \le 0\) 和(0<\eta \le 1\) 时,\(\le Left( {(Az+1)}/{(Bz+1)}\right) ^\eta \)相对于\((1/(Bz+1))^{eta })是广义 Cesàro 稳定的,但相对于它本身不是。作为应用,我们得到了关于 Cesàro 稳定性和稳定性的新的和已有的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信