The number of spanning trees in a superprism

IF 1 Q1 MATHEMATICS
Z. R. Bogdanowicz
{"title":"The number of spanning trees in a superprism","authors":"Z. R. Bogdanowicz","doi":"10.47443/dml.2024.004","DOIUrl":null,"url":null,"abstract":"Let the vertices of two disjoint and equal length cycles be denoted u 0 , u 1 , . . . , u n − 1 in the first cycle and v 0 , v 1 , . . . , v n − 1 in the second cycle for n ≥ 4 . The superprism ˘ P n is defined as the graph obtained by adding to these disjoint cycles all edges of the form u i v i and u i v i +2 (mod n ) . In this paper, it is proved that the number of spanning trees in ˘ P n is n · 2 3 n − 2 .","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2024.004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let the vertices of two disjoint and equal length cycles be denoted u 0 , u 1 , . . . , u n − 1 in the first cycle and v 0 , v 1 , . . . , v n − 1 in the second cycle for n ≥ 4 . The superprism ˘ P n is defined as the graph obtained by adding to these disjoint cycles all edges of the form u i v i and u i v i +2 (mod n ) . In this paper, it is proved that the number of spanning trees in ˘ P n is n · 2 3 n − 2 .
超prism 的生成树数量
设两个不相交且长度相等的循环的顶点分别记为第一个循环中的 u 0 , u 1 , ., 第一个循环中的 u n - 1 和第二个循环中的 v 0 , v 1 , ., v n - 1 在 n ≥ 4 的第二个周期中。超prism ˘ P n 被定义为在这些互不相交的循环中加入所有形式为 u i v i 和 u i v i +2 (mod n ) 的边所得到的图形。本文证明,˘ P n 中的生成树数为 n - 2 3 n - 2 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信