Soumia Hamdani, Saad Abdeslam, A. Hartmaier, R. Janisch
{"title":"Atomistic simulation of the influence of semi-coherent interfaces in the V/Fe bilayer system on plastic deformation during nanoindentation","authors":"Soumia Hamdani, Saad Abdeslam, A. Hartmaier, R. Janisch","doi":"10.1088/1361-651x/ad3b28","DOIUrl":null,"url":null,"abstract":"\n Semi-coherent interfaces can have a strong influence on the mechanical behavior of bilayer systems, which is seen very clearly under indentation conditions where a well-defined plastic zone interacts directly with the interface. The main aim of this work is to study the influence of a semi-coherent bcc/bcc interface in the V/Fe bilayer system with molecular dynamics (MD) simulations. In particular, the influence of the V layer thicknesses on the apparent hardness of the bilayer system is investigated. Our results show that the deformation behavior of pure V and pure Fe resulting from the MD simulations is in good agreement with the literature. Moreover, the MD simulations reveal a significant enhancement of the hardness of V/Fe bilayer system for thinner vanadium layers, resulting from the crucial role of the semi-coherent interface as a barrier to dislocation propagation. This is seen from a detailed analysis of the interaction of mobile dislocations in the plastic zone with misfit dislocations in the interface. Our work shows that dislocation pile-ups at the interface and formation of horizontal shear loops are two key mechanisms dominating the rate and magnitude of plastic deformation and thus contributes to our understanding of mechanical behavior of bilayer systems with semi-coherent interfaces.","PeriodicalId":18648,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad3b28","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Semi-coherent interfaces can have a strong influence on the mechanical behavior of bilayer systems, which is seen very clearly under indentation conditions where a well-defined plastic zone interacts directly with the interface. The main aim of this work is to study the influence of a semi-coherent bcc/bcc interface in the V/Fe bilayer system with molecular dynamics (MD) simulations. In particular, the influence of the V layer thicknesses on the apparent hardness of the bilayer system is investigated. Our results show that the deformation behavior of pure V and pure Fe resulting from the MD simulations is in good agreement with the literature. Moreover, the MD simulations reveal a significant enhancement of the hardness of V/Fe bilayer system for thinner vanadium layers, resulting from the crucial role of the semi-coherent interface as a barrier to dislocation propagation. This is seen from a detailed analysis of the interaction of mobile dislocations in the plastic zone with misfit dislocations in the interface. Our work shows that dislocation pile-ups at the interface and formation of horizontal shear loops are two key mechanisms dominating the rate and magnitude of plastic deformation and thus contributes to our understanding of mechanical behavior of bilayer systems with semi-coherent interfaces.
期刊介绍:
Serving the multidisciplinary materials community, the journal aims to publish new research work that advances the understanding and prediction of material behaviour at scales from atomistic to macroscopic through modelling and simulation.
Subject coverage:
Modelling and/or simulation across materials science that emphasizes fundamental materials issues advancing the understanding and prediction of material behaviour. Interdisciplinary research that tackles challenging and complex materials problems where the governing phenomena may span different scales of materials behaviour, with an emphasis on the development of quantitative approaches to explain and predict experimental observations. Material processing that advances the fundamental materials science and engineering underpinning the connection between processing and properties. Covering all classes of materials, and mechanical, microstructural, electronic, chemical, biological, and optical properties.