Identifying key inflammatory genes in psoriasis via weighted gene co-expression network analysis: Potential targets for therapy

Huidan Li, Xiaorui Wang, Jing Zhu, Bingzhe Yang, Jiatao Lou
{"title":"Identifying key inflammatory genes in psoriasis via weighted gene co-expression network analysis: Potential targets for therapy","authors":"Huidan Li, Xiaorui Wang, Jing Zhu, Bingzhe Yang, Jiatao Lou","doi":"10.17305/bb.2024.10327","DOIUrl":null,"url":null,"abstract":"Psoriasis is a globally prevalent chronic inflammatory skin disease. This study aimed to scrutinize the hub genes related to inflammation and potential molecular mechanisms in psoriasis. Utilizing mRNA expression profiles from public datasets GSE13355, GSE78097, and GSE14905, we set up a comprehensive analysis. Initially, we selected differentially expressed genes (DEGs) from psoriasis and control samples in GSE13355, followed by calculating inflammatory indices using genomic set variation analysis (GSVA). Weighted gene co-expression network analysis (WGCNA) was then applied to link significant modules with the inflammatory index. This process helped us identify differentially expressed inflammation-related genes (DE-IRGs). A protein-protein interaction (PPI) network was established, with the molecular complex detection (MCODE) plug-in pinpointing six chemokine genes (CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2) as central hub genes. These genes demonstrated pronounced immunohistochemical staining in psoriatic tissues compared to normal skin. Notably, the CCR7 gene exhibited the highest potential for m6A modification sites. Furthermore, we constructed transcription factor-microRNA-mRNA networks, identifying 139 microRNAs and 52 transcription factors associated with the hub genes. For the LASSO logistic regression model, the area under the curve (AUC) in the training set was 1, and in the two validation cohorts GSE78097 and GSE14905 were 1 and 0.872, respectively. In conclusion, our study highlights six chemokine genes (CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2) as potential biomarkers in psoriasis, providing insights into the immune and inflammatory responses as pivotal instances in disease pathogenesis. These findings pave the way for exploring new therapeutic targets, particularly focusing on chemokine-associated pathways in psoriasis treatment.","PeriodicalId":504577,"journal":{"name":"Biomolecules and Biomedicine","volume":"28 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules and Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17305/bb.2024.10327","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Psoriasis is a globally prevalent chronic inflammatory skin disease. This study aimed to scrutinize the hub genes related to inflammation and potential molecular mechanisms in psoriasis. Utilizing mRNA expression profiles from public datasets GSE13355, GSE78097, and GSE14905, we set up a comprehensive analysis. Initially, we selected differentially expressed genes (DEGs) from psoriasis and control samples in GSE13355, followed by calculating inflammatory indices using genomic set variation analysis (GSVA). Weighted gene co-expression network analysis (WGCNA) was then applied to link significant modules with the inflammatory index. This process helped us identify differentially expressed inflammation-related genes (DE-IRGs). A protein-protein interaction (PPI) network was established, with the molecular complex detection (MCODE) plug-in pinpointing six chemokine genes (CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2) as central hub genes. These genes demonstrated pronounced immunohistochemical staining in psoriatic tissues compared to normal skin. Notably, the CCR7 gene exhibited the highest potential for m6A modification sites. Furthermore, we constructed transcription factor-microRNA-mRNA networks, identifying 139 microRNAs and 52 transcription factors associated with the hub genes. For the LASSO logistic regression model, the area under the curve (AUC) in the training set was 1, and in the two validation cohorts GSE78097 and GSE14905 were 1 and 0.872, respectively. In conclusion, our study highlights six chemokine genes (CCR7, CCL2, CCL19, CXCL8, CXCL1, and CXCL2) as potential biomarkers in psoriasis, providing insights into the immune and inflammatory responses as pivotal instances in disease pathogenesis. These findings pave the way for exploring new therapeutic targets, particularly focusing on chemokine-associated pathways in psoriasis treatment.
通过加权基因共表达网络分析确定银屑病的关键炎症基因:潜在的治疗靶点
银屑病是一种全球流行的慢性炎症性皮肤病。本研究旨在研究与炎症相关的枢纽基因以及银屑病的潜在分子机制。我们利用公共数据集 GSE13355、GSE78097 和 GSE14905 中的 mRNA 表达谱进行了全面分析。首先,我们从 GSE13355 中的银屑病样本和对照样本中筛选出差异表达基因(DEGs),然后利用基因组集变异分析(GSVA)计算炎症指数。然后应用加权基因共表达网络分析(WGCNA)将重要模块与炎症指数联系起来。这一过程帮助我们确定了差异表达的炎症相关基因(DE-IRGs)。通过分子复合体检测(MCODE)插件,我们建立了一个蛋白-蛋白相互作用(PPI)网络,并将六个趋化因子基因(CCR7、CCL2、CCL19、CXCL8、CXCL1 和 CXCL2)确定为中心枢纽基因。与正常皮肤相比,这些基因在银屑病组织中显示出明显的免疫组化染色。值得注意的是,CCR7 基因的 m6A 修饰位点潜力最大。此外,我们还构建了转录因子-microRNA-mRNA 网络,确定了与枢纽基因相关的 139 个 microRNA 和 52 个转录因子。对于 LASSO 逻辑回归模型,训练集的曲线下面积(AUC)为 1,两个验证队列 GSE78097 和 GSE14905 的曲线下面积(AUC)分别为 1 和 0.872。总之,我们的研究强调了六个趋化因子基因(CCR7、CCL2、CCL19、CXCL8、CXCL1 和 CXCL2)作为银屑病潜在生物标记物的作用,为了解疾病发病机制中的免疫和炎症反应提供了重要线索。这些发现为探索新的治疗目标,特别是银屑病治疗中的趋化因子相关途径铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信