Evaluation of Benzene Adsorption onto Grass-Derived Biochar and Comparison of Adsorption Capacity via RSM (Response Surface Methodology)

Yuhyeon Na, Seung Hyeon Weon, G. Lee, Hyung-Joo Kim, Sang Hyun Lee, Young-Hoo Kim, Ji Eun Kim, G. Kang, Saerom Park, Yong-Keun Choi
{"title":"Evaluation of Benzene Adsorption onto Grass-Derived Biochar and Comparison of Adsorption Capacity via RSM (Response Surface Methodology)","authors":"Yuhyeon Na, Seung Hyeon Weon, G. Lee, Hyung-Joo Kim, Sang Hyun Lee, Young-Hoo Kim, Ji Eun Kim, G. Kang, Saerom Park, Yong-Keun Choi","doi":"10.3390/jcs8040132","DOIUrl":null,"url":null,"abstract":"The present study reports the effective removal of benzene in aqueous phase onto biochar. The adsorption capacity of benzene onto biochars made at different pyrolytic temperatures (e.g., 350, 550, and 750 °C) and from various feedstocks (e.g., grape pomace, rice husk, and Kentucky bluegrass) were investigated. The adsorption capacity of Kentucky bluegrass-derived biochar (KB-BC) prepared at 550 °C for benzene was better than other biochars, owing to the higher surface area and functional groups. The adsorption isotherms and kinetics model for benzene by KB-BC550 fitted the Freundlich and pseudo-first order, respectively. In addition, the results of response surface methodology (RSM) designed with biochar dose, reaction time, and benzene concentration showed the maximum adsorption capacity (ca. 136 mg BZ/g BC) similar to that from kinetic study. KB-BCs obtained as waste grass biomass may be a valuable adsorbent, and RSM may be a useful tool for the investigation of optimal conditions and results.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"14 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jcs8040132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study reports the effective removal of benzene in aqueous phase onto biochar. The adsorption capacity of benzene onto biochars made at different pyrolytic temperatures (e.g., 350, 550, and 750 °C) and from various feedstocks (e.g., grape pomace, rice husk, and Kentucky bluegrass) were investigated. The adsorption capacity of Kentucky bluegrass-derived biochar (KB-BC) prepared at 550 °C for benzene was better than other biochars, owing to the higher surface area and functional groups. The adsorption isotherms and kinetics model for benzene by KB-BC550 fitted the Freundlich and pseudo-first order, respectively. In addition, the results of response surface methodology (RSM) designed with biochar dose, reaction time, and benzene concentration showed the maximum adsorption capacity (ca. 136 mg BZ/g BC) similar to that from kinetic study. KB-BCs obtained as waste grass biomass may be a valuable adsorbent, and RSM may be a useful tool for the investigation of optimal conditions and results.
通过 RSM(响应面方法学)评估草衍生生物炭对苯的吸附情况并比较吸附容量
本研究报告了生物炭有效去除水相中苯的情况。研究了不同热解温度(如 350、550 和 750 ℃)和不同原料(如葡萄渣、稻壳和肯塔基蓝草)制成的生物炭对苯的吸附能力。在 550 ℃ 下制备的肯塔基蓝草衍生生物炭(KB-BC)对苯的吸附能力优于其他生物炭,原因是其具有更高的表面积和官能团。KB-BC550 对苯的吸附等温线和动力学模型分别符合 Freundlich 和伪一阶。此外,根据生物炭剂量、反应时间和苯浓度设计的响应面方法(RSM)结果显示,最大吸附容量(约 136 毫克 BZ/g BC)与动力学研究结果相似。从废草生物质中获得的 KB-BCs 可能是一种有价值的吸附剂,RSM 可能是研究最佳条件和结果的有用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信