Linear vector recursions of arbitrary order

IF 1 Q1 MATHEMATICS
Bernadette Faye, L´aszl´o N´emeth, L'aszl'o Szalay
{"title":"Linear vector recursions of arbitrary order","authors":"Bernadette Faye, L´aszl´o N´emeth, L'aszl'o Szalay","doi":"10.47443/dml.2024.029","DOIUrl":null,"url":null,"abstract":"Solution of various combinatorial problems often requires vector recurrences of higher order (i.e., the order is larger than 1). Assume that there are given matrices A 1 , A 2 , . . . , A s , all from C k × k . These matrices allow us to define the vector recurrence ¯ v n = A 1 ¯ v n − 1 + A 2 ¯ v n − 2 + · · · + A s ¯ v n − s for the vectors ¯ v n ∈ C k , n ≥ s . The paramount result of this paper is that we could separate the component sequences of the vectors and find a common linear recurrence relation to describe them. The principal advantage of our approach is a uniform treatment and the possibility of automatism. We could apply the main result to answer a problem that arose concerning the rows of the modified hyperbolic Pascal triangle with parameters { 4 , 5 } . We also verified two other statements from the literature in order to illustrate the power of the method.","PeriodicalId":36023,"journal":{"name":"Discrete Mathematics Letters","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47443/dml.2024.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Solution of various combinatorial problems often requires vector recurrences of higher order (i.e., the order is larger than 1). Assume that there are given matrices A 1 , A 2 , . . . , A s , all from C k × k . These matrices allow us to define the vector recurrence ¯ v n = A 1 ¯ v n − 1 + A 2 ¯ v n − 2 + · · · + A s ¯ v n − s for the vectors ¯ v n ∈ C k , n ≥ s . The paramount result of this paper is that we could separate the component sequences of the vectors and find a common linear recurrence relation to describe them. The principal advantage of our approach is a uniform treatment and the possibility of automatism. We could apply the main result to answer a problem that arose concerning the rows of the modified hyperbolic Pascal triangle with parameters { 4 , 5 } . We also verified two other statements from the literature in order to illustrate the power of the method.
任意阶的线性矢量递推
解决各种组合问题往往需要高阶(即阶数大于 1)的向量递归。假设给定矩阵 A 1 , A 2 , ., A s,均来自 C k × k。这些矩阵允许我们定义矢量 ¯ v n ∈ C k , n ≥ s 的矢量递推关系 ¯ v n = A 1 ¯ v n - 1 + A 2 ¯ v n - 2 + - - + A s ¯ v n - s 。 本文的重要成果是,我们可以分离矢量的分量序列,并找到一个共同的线性递推关系来描述它们。我们这种方法的主要优点是处理方法统一,而且有可能实现自动化。我们可以应用主要结果来回答一个问题,这个问题涉及参数 { 4 , 5 } 的双曲帕斯卡三角形的行。.我们还验证了文献中的另外两种说法,以说明该方法的威力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics Letters
Discrete Mathematics Letters Mathematics-Discrete Mathematics and Combinatorics
CiteScore
1.50
自引率
12.50%
发文量
47
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信