In Vitro Assessment of the Anti-Proliferative and Anti-Viability Effects of Salivary Gland Extracts from Hyalomma ticks (Acari: Ixodidae) on Human Colorectal Cancer Cells
Maryam Tavassoli, Mehdi Kadivar, A. Akhavan, Mohammad Abdigoudarzi, Abbas Moridnia, Samira Chaibakhsh, Mojtaba Beikmohammadi, M. Sedaghat
{"title":"In Vitro Assessment of the Anti-Proliferative and Anti-Viability Effects of Salivary Gland Extracts from Hyalomma ticks (Acari: Ixodidae) on Human Colorectal Cancer Cells","authors":"Maryam Tavassoli, Mehdi Kadivar, A. Akhavan, Mohammad Abdigoudarzi, Abbas Moridnia, Samira Chaibakhsh, Mojtaba Beikmohammadi, M. Sedaghat","doi":"10.18502/jad.v17i4.15298","DOIUrl":null,"url":null,"abstract":"Background: The saliva and salivary glands of ticks possess a wide range of immuno-pharmacologically active molecules that effectively modulate the activity of enzymes, antibodies, and amines that have a role in different biological processes. Derived components from saliva and salivary glands of hard ticks Ixodidae have been characterized as potential natural sources for discovering promising anti-cancer drug candidates. \nMethods: The anti-cancer activity of salivary gland extracts (SGEs) from Hyalomma anatolicum, Hyalomma dromedarii, Hyalomma marginatum, and Hyalomma schulzei was assessed. MTT assays and flow cytometry were done on the HT-29 colorectal cancer cell line to evaluate the anti-viability and proliferative inhibition. \nResults: Based on the MTT assay results, the SGEs from Hy. dromedarii had the highest and lowest substantial anti-viability effects on the HT-29 cancer cell and human foreskin fibroblast (HFF) normal cell, respectively. The cytometric assessment revealed a significant increase in the apoptosis and necrosis ratio of the HT-29 cancer cells after treatment with Hy. dromedarii SGEs. \nConclusion: The results demonstrated that Hy. dromedarii SGEs have significant anti-proliferative, anti-viability, and apoptotic potential. The result of this study suggests that Hy. dromedarii SGEs is an appropriate candidate for further investigations to identify and purify the mechanisms and molecules involved in the anti-cancer activity of the SGEs. \n ","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.18502/jad.v17i4.15298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The saliva and salivary glands of ticks possess a wide range of immuno-pharmacologically active molecules that effectively modulate the activity of enzymes, antibodies, and amines that have a role in different biological processes. Derived components from saliva and salivary glands of hard ticks Ixodidae have been characterized as potential natural sources for discovering promising anti-cancer drug candidates.
Methods: The anti-cancer activity of salivary gland extracts (SGEs) from Hyalomma anatolicum, Hyalomma dromedarii, Hyalomma marginatum, and Hyalomma schulzei was assessed. MTT assays and flow cytometry were done on the HT-29 colorectal cancer cell line to evaluate the anti-viability and proliferative inhibition.
Results: Based on the MTT assay results, the SGEs from Hy. dromedarii had the highest and lowest substantial anti-viability effects on the HT-29 cancer cell and human foreskin fibroblast (HFF) normal cell, respectively. The cytometric assessment revealed a significant increase in the apoptosis and necrosis ratio of the HT-29 cancer cells after treatment with Hy. dromedarii SGEs.
Conclusion: The results demonstrated that Hy. dromedarii SGEs have significant anti-proliferative, anti-viability, and apoptotic potential. The result of this study suggests that Hy. dromedarii SGEs is an appropriate candidate for further investigations to identify and purify the mechanisms and molecules involved in the anti-cancer activity of the SGEs.