{"title":"Implementation of blockchain for sustainable solar energy trading: a systematic review","authors":"Diyana Sheharee Ranasinghe, N. Rodrigo","doi":"10.1108/sasbe-12-2023-0404","DOIUrl":null,"url":null,"abstract":"PurposeBlockchain for energy trading is a trending research area in the current context. However, a noticeable gap exists in the review articles focussing on solar energy trading with blockchain technology. Thus, this study aims to systematically examine and synthesise the existing research on implementing blockchain technology in sustainable solar energy trading.Design/methodology/approachThe study pursued a systematic literature review to achieve its aim. The data extraction process focussed on the Scopus and Web of Science (WoS) databases, yielding an initial set of 129 articles. Subsequent screening and removal of duplicates led to 87 articles for bibliometric analysis, utilising VOSviewer software to discern evolutionary progress in the field. Following the establishment of inclusion and exclusion criteria, a manual content analysis was conducted on a subset of 19 articles.FindingsThe results indicated a rising interest in publications on solar energy trading with blockchain technology. Some studies are exploring the integration of new technologies like machine learning and artificial intelligence in this domain. However, challenges and limitations were identified, such as the absence of real-world solar energy trading projects.Originality/valueThis study offers a distinctive approach by integrating bibliometric and manual content analyses, a methodology seldom explored. It provides valuable recommendations for academia and industry, influencing future research and industry practices. Insights include integrating blockchain into solar energy trading and addressing knowledge gaps. These findings advance societal goals, such as transitioning to renewable energy sources (RES) and mitigating carbon emissions, fostering a sustainable future.","PeriodicalId":45779,"journal":{"name":"Smart and Sustainable Built Environment","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart and Sustainable Built Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/sasbe-12-2023-0404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
PurposeBlockchain for energy trading is a trending research area in the current context. However, a noticeable gap exists in the review articles focussing on solar energy trading with blockchain technology. Thus, this study aims to systematically examine and synthesise the existing research on implementing blockchain technology in sustainable solar energy trading.Design/methodology/approachThe study pursued a systematic literature review to achieve its aim. The data extraction process focussed on the Scopus and Web of Science (WoS) databases, yielding an initial set of 129 articles. Subsequent screening and removal of duplicates led to 87 articles for bibliometric analysis, utilising VOSviewer software to discern evolutionary progress in the field. Following the establishment of inclusion and exclusion criteria, a manual content analysis was conducted on a subset of 19 articles.FindingsThe results indicated a rising interest in publications on solar energy trading with blockchain technology. Some studies are exploring the integration of new technologies like machine learning and artificial intelligence in this domain. However, challenges and limitations were identified, such as the absence of real-world solar energy trading projects.Originality/valueThis study offers a distinctive approach by integrating bibliometric and manual content analyses, a methodology seldom explored. It provides valuable recommendations for academia and industry, influencing future research and industry practices. Insights include integrating blockchain into solar energy trading and addressing knowledge gaps. These findings advance societal goals, such as transitioning to renewable energy sources (RES) and mitigating carbon emissions, fostering a sustainable future.