Cardiovascular Disease Long-Term Care Risk Prediction by Claims Data Analysis Using Machine Learning

Sourabh Pawar, Pranav More, Tejas Pawar, Prof. Priti Rathod
{"title":"Cardiovascular Disease Long-Term Care Risk Prediction by Claims Data Analysis Using Machine Learning","authors":"Sourabh Pawar, Pranav More, Tejas Pawar, Prof. Priti Rathod","doi":"10.32628/ijsrset2411222","DOIUrl":null,"url":null,"abstract":"Heart complaint is a major global health concern, especially in prognosticating cardiovascular issues. Machine literacy (ML) and the Internet of effects (IoT) offer new ways to dissect healthcare data. still, current exploration lacks depth in using ML for heart complaint vaticination. To fill this gap, we propose a unique system that uses ML to identify crucial features for better heart complaint vaticination delicacy. Our model combines colorful features and bracket ways to achieve an delicacy of 88.7 in prognosticating heart complaint, with the cold-blooded arbitrary timber and direct model (HRFLM) proving particularly effective. This study advances heart complaint discovery by integrating ML and IoT technologies.","PeriodicalId":14228,"journal":{"name":"International Journal of Scientific Research in Science, Engineering and Technology","volume":"29 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrset2411222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Heart complaint is a major global health concern, especially in prognosticating cardiovascular issues. Machine literacy (ML) and the Internet of effects (IoT) offer new ways to dissect healthcare data. still, current exploration lacks depth in using ML for heart complaint vaticination. To fill this gap, we propose a unique system that uses ML to identify crucial features for better heart complaint vaticination delicacy. Our model combines colorful features and bracket ways to achieve an delicacy of 88.7 in prognosticating heart complaint, with the cold-blooded arbitrary timber and direct model (HRFLM) proving particularly effective. This study advances heart complaint discovery by integrating ML and IoT technologies.
利用机器学习通过理赔数据分析进行心血管疾病长期护理风险预测
心脏病是全球关注的主要健康问题,尤其是在心血管问题的预后方面。机器扫盲(ML)和物联网(IoT)提供了剖析医疗保健数据的新方法。为了填补这一空白,我们提出了一种独特的系统,利用 ML 来识别关键特征,从而更好地进行心脏疾病诊断。我们的模型结合了丰富多彩的特征和支架方法,在预报心脏病方面达到了 88.7 的精确度,其中冷血任意木材和直接模型(HRFLM)尤其有效。这项研究通过整合 ML 和 IoT 技术,推动了心脏疾病的发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信