Olga Narushynska, V. Teslyuk, Anastasiya Doroshenko, Maksym Arzubov
{"title":"Data Sorting Influence on Short Text Manual Labeling Quality for Hierarchical Classification","authors":"Olga Narushynska, V. Teslyuk, Anastasiya Doroshenko, Maksym Arzubov","doi":"10.3390/bdcc8040041","DOIUrl":null,"url":null,"abstract":"The precise categorization of brief texts holds significant importance in various applications within the ever-changing realm of artificial intelligence (AI) and natural language processing (NLP). Short texts are everywhere in the digital world, from social media updates to customer reviews and feedback. Nevertheless, short texts’ limited length and context pose unique challenges for accurate classification. This research article delves into the influence of data sorting methods on the quality of manual labeling in hierarchical classification, with a particular focus on short texts. The study is set against the backdrop of the increasing reliance on manual labeling in AI and NLP, highlighting its significance in the accuracy of hierarchical text classification. Methodologically, the study integrates AI, notably zero-shot learning, with human annotation processes to examine the efficacy of various data-sorting strategies. The results demonstrate how different sorting approaches impact the accuracy and consistency of manual labeling, a critical aspect of creating high-quality datasets for NLP applications. The study’s findings reveal a significant time efficiency improvement in terms of labeling, where ordered manual labeling required 760 min per 1000 samples, compared to 800 min for traditional manual labeling, illustrating the practical benefits of optimized data sorting strategies. Comparatively, ordered manual labeling achieved the highest mean accuracy rates across all hierarchical levels, with figures reaching up to 99% for segments, 95% for families, 92% for classes, and 90% for bricks, underscoring the efficiency of structured data sorting. It offers valuable insights and practical guidelines for improving labeling quality in hierarchical classification tasks, thereby advancing the precision of text analysis in AI-driven research. This abstract encapsulates the article’s background, methods, results, and conclusions, providing a comprehensive yet succinct study overview.","PeriodicalId":505155,"journal":{"name":"Big Data and Cognitive Computing","volume":"47 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc8040041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The precise categorization of brief texts holds significant importance in various applications within the ever-changing realm of artificial intelligence (AI) and natural language processing (NLP). Short texts are everywhere in the digital world, from social media updates to customer reviews and feedback. Nevertheless, short texts’ limited length and context pose unique challenges for accurate classification. This research article delves into the influence of data sorting methods on the quality of manual labeling in hierarchical classification, with a particular focus on short texts. The study is set against the backdrop of the increasing reliance on manual labeling in AI and NLP, highlighting its significance in the accuracy of hierarchical text classification. Methodologically, the study integrates AI, notably zero-shot learning, with human annotation processes to examine the efficacy of various data-sorting strategies. The results demonstrate how different sorting approaches impact the accuracy and consistency of manual labeling, a critical aspect of creating high-quality datasets for NLP applications. The study’s findings reveal a significant time efficiency improvement in terms of labeling, where ordered manual labeling required 760 min per 1000 samples, compared to 800 min for traditional manual labeling, illustrating the practical benefits of optimized data sorting strategies. Comparatively, ordered manual labeling achieved the highest mean accuracy rates across all hierarchical levels, with figures reaching up to 99% for segments, 95% for families, 92% for classes, and 90% for bricks, underscoring the efficiency of structured data sorting. It offers valuable insights and practical guidelines for improving labeling quality in hierarchical classification tasks, thereby advancing the precision of text analysis in AI-driven research. This abstract encapsulates the article’s background, methods, results, and conclusions, providing a comprehensive yet succinct study overview.