Data Sorting Influence on Short Text Manual Labeling Quality for Hierarchical Classification

Olga Narushynska, V. Teslyuk, Anastasiya Doroshenko, Maksym Arzubov
{"title":"Data Sorting Influence on Short Text Manual Labeling Quality for Hierarchical Classification","authors":"Olga Narushynska, V. Teslyuk, Anastasiya Doroshenko, Maksym Arzubov","doi":"10.3390/bdcc8040041","DOIUrl":null,"url":null,"abstract":"The precise categorization of brief texts holds significant importance in various applications within the ever-changing realm of artificial intelligence (AI) and natural language processing (NLP). Short texts are everywhere in the digital world, from social media updates to customer reviews and feedback. Nevertheless, short texts’ limited length and context pose unique challenges for accurate classification. This research article delves into the influence of data sorting methods on the quality of manual labeling in hierarchical classification, with a particular focus on short texts. The study is set against the backdrop of the increasing reliance on manual labeling in AI and NLP, highlighting its significance in the accuracy of hierarchical text classification. Methodologically, the study integrates AI, notably zero-shot learning, with human annotation processes to examine the efficacy of various data-sorting strategies. The results demonstrate how different sorting approaches impact the accuracy and consistency of manual labeling, a critical aspect of creating high-quality datasets for NLP applications. The study’s findings reveal a significant time efficiency improvement in terms of labeling, where ordered manual labeling required 760 min per 1000 samples, compared to 800 min for traditional manual labeling, illustrating the practical benefits of optimized data sorting strategies. Comparatively, ordered manual labeling achieved the highest mean accuracy rates across all hierarchical levels, with figures reaching up to 99% for segments, 95% for families, 92% for classes, and 90% for bricks, underscoring the efficiency of structured data sorting. It offers valuable insights and practical guidelines for improving labeling quality in hierarchical classification tasks, thereby advancing the precision of text analysis in AI-driven research. This abstract encapsulates the article’s background, methods, results, and conclusions, providing a comprehensive yet succinct study overview.","PeriodicalId":505155,"journal":{"name":"Big Data and Cognitive Computing","volume":"47 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc8040041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The precise categorization of brief texts holds significant importance in various applications within the ever-changing realm of artificial intelligence (AI) and natural language processing (NLP). Short texts are everywhere in the digital world, from social media updates to customer reviews and feedback. Nevertheless, short texts’ limited length and context pose unique challenges for accurate classification. This research article delves into the influence of data sorting methods on the quality of manual labeling in hierarchical classification, with a particular focus on short texts. The study is set against the backdrop of the increasing reliance on manual labeling in AI and NLP, highlighting its significance in the accuracy of hierarchical text classification. Methodologically, the study integrates AI, notably zero-shot learning, with human annotation processes to examine the efficacy of various data-sorting strategies. The results demonstrate how different sorting approaches impact the accuracy and consistency of manual labeling, a critical aspect of creating high-quality datasets for NLP applications. The study’s findings reveal a significant time efficiency improvement in terms of labeling, where ordered manual labeling required 760 min per 1000 samples, compared to 800 min for traditional manual labeling, illustrating the practical benefits of optimized data sorting strategies. Comparatively, ordered manual labeling achieved the highest mean accuracy rates across all hierarchical levels, with figures reaching up to 99% for segments, 95% for families, 92% for classes, and 90% for bricks, underscoring the efficiency of structured data sorting. It offers valuable insights and practical guidelines for improving labeling quality in hierarchical classification tasks, thereby advancing the precision of text analysis in AI-driven research. This abstract encapsulates the article’s background, methods, results, and conclusions, providing a comprehensive yet succinct study overview.
数据排序对分层分类中短文本人工标注质量的影响
在日新月异的人工智能(AI)和自然语言处理(NLP)领域的各种应用中,对简短文本进行精确分类具有重要意义。在数字世界中,从社交媒体更新到客户评论和反馈,短文随处可见。然而,短文有限的长度和上下文给准确分类带来了独特的挑战。本研究文章深入探讨了数据分类方法对分层分类中人工标注质量的影响,尤其关注短文本。本研究以人工智能和 NLP 越来越依赖人工标注为背景,强调了人工标注对分层文本分类准确性的重要意义。在方法上,研究将人工智能(尤其是零点学习)与人工标注过程相结合,以检验各种数据分类策略的有效性。结果表明了不同的分类方法如何影响人工标注的准确性和一致性,而人工标注是为 NLP 应用创建高质量数据集的一个关键方面。研究结果表明,有序人工标注每 1000 个样本需要 760 分钟,而传统人工标注则需要 800 分钟,标注时间效率显著提高,说明了优化数据排序策略的实际优势。相比之下,有序人工标注在所有分层水平上都达到了最高的平均准确率,其中段的准确率高达 99%,族的准确率高达 95%,类的准确率高达 92%,砖的准确率高达 90%,这凸显了结构化数据排序的效率。它为提高分层分类任务中的标签质量提供了宝贵的见解和实用指南,从而提高了人工智能驱动研究中文本分析的精确度。本摘要概括了文章的背景、方法、结果和结论,提供了一个全面而简洁的研究概述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信