Modeling and Predicting Passenger Load Factor in Air Transportation: A Deep Assessment Methodology with Fractional Calculus Approach Utilizing Reservation Data
IF 3.6 2区 数学Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Kevser Şimşek, Nisa Özge Önal Tuğrul, K. Karaçuha, Vasil Tabatadze, E. Karaçuha
{"title":"Modeling and Predicting Passenger Load Factor in Air Transportation: A Deep Assessment Methodology with Fractional Calculus Approach Utilizing Reservation Data","authors":"Kevser Şimşek, Nisa Özge Önal Tuğrul, K. Karaçuha, Vasil Tabatadze, E. Karaçuha","doi":"10.3390/fractalfract8040214","DOIUrl":null,"url":null,"abstract":"This study addresses the challenge of predicting the passenger load factor (PLF) in air transportation to optimize capacity management and revenue maximization. Leveraging historical reservation data from 19 Turkish Airlines market routes and sample flights, we propose a novel approach combining deep assessment methodology (DAM) with fractional calculus theory. By modeling the relationship between PLF and the number of days remaining until a flight, our method yields minimal errors compared to traditional techniques. Through a continuous curve constructed using the least-squares approach, we enable the anticipation of future flight values. Our analysis demonstrates that the DAM model with a first-order derivative outperforms linear techniques and the Fractional Model-3 in both modeling capabilities and prediction accuracy. The proposed approach offers a data-driven solution for efficiently managing air transport capacity, with implications for revenue optimization. Specifically, our modeling findings indicate that the DAM wd model improves prediction accuracy by approximately 0.67 times compared to the DAM model, surpassing the fractional model and regression analysis. For the DAM wd modeling method, the lowest average mean absolute percentage error (AMAPE) value achieved is 0.571, showcasing its effectiveness in forecasting flight outcomes.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8040214","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study addresses the challenge of predicting the passenger load factor (PLF) in air transportation to optimize capacity management and revenue maximization. Leveraging historical reservation data from 19 Turkish Airlines market routes and sample flights, we propose a novel approach combining deep assessment methodology (DAM) with fractional calculus theory. By modeling the relationship between PLF and the number of days remaining until a flight, our method yields minimal errors compared to traditional techniques. Through a continuous curve constructed using the least-squares approach, we enable the anticipation of future flight values. Our analysis demonstrates that the DAM model with a first-order derivative outperforms linear techniques and the Fractional Model-3 in both modeling capabilities and prediction accuracy. The proposed approach offers a data-driven solution for efficiently managing air transport capacity, with implications for revenue optimization. Specifically, our modeling findings indicate that the DAM wd model improves prediction accuracy by approximately 0.67 times compared to the DAM model, surpassing the fractional model and regression analysis. For the DAM wd modeling method, the lowest average mean absolute percentage error (AMAPE) value achieved is 0.571, showcasing its effectiveness in forecasting flight outcomes.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.