AI Trainer  : Video-Based Squat Analysis

Prof. Anuja Garande, Kushank Patil, Rasika Deshmukh, Siddhi Gurav, Chaitanya Yadav
{"title":"AI Trainer  : Video-Based Squat Analysis","authors":"Prof. Anuja Garande, Kushank Patil, Rasika Deshmukh, Siddhi Gurav, Chaitanya Yadav","doi":"10.32628/ijsrset2411221","DOIUrl":null,"url":null,"abstract":"This research proposes a video-based system for analyzing human squats and providing real-time feedback to improve posture. The system leverages MediaPipe, an open-source pose estimation library, to identify key body joints during squats. By calculating crucial joint angles (knee flexion, hip flexion, ankle dorsiflexion), the system assesses squat form against established biomechanical principles. Deviations from these principles trigger real-time feedback messages or visual cues to guide users towards optimal squat posture. The paper details the system architecture, with a client-side application performing pose estimation and feedback generation. The methodology outlines data collection with various squat variations, system development integrating MediaPipe, and evaluation through user testing with comparison to expert evaluations. Key features include real-time feedback and customizable thresholds for user adaptation. Potential applications encompass fitness training, physical therapy, and sports training. Finally, the paper explores future work possibilities like mobile integration, advanced feedback mechanisms, and machine learning for automatic threshold adjustments. This research offers a valuable tool for squat analysis, empowering users to achieve their fitness goals with proper form and reduced injury risk.","PeriodicalId":14228,"journal":{"name":"International Journal of Scientific Research in Science, Engineering and Technology","volume":"15 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Science, Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32628/ijsrset2411221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research proposes a video-based system for analyzing human squats and providing real-time feedback to improve posture. The system leverages MediaPipe, an open-source pose estimation library, to identify key body joints during squats. By calculating crucial joint angles (knee flexion, hip flexion, ankle dorsiflexion), the system assesses squat form against established biomechanical principles. Deviations from these principles trigger real-time feedback messages or visual cues to guide users towards optimal squat posture. The paper details the system architecture, with a client-side application performing pose estimation and feedback generation. The methodology outlines data collection with various squat variations, system development integrating MediaPipe, and evaluation through user testing with comparison to expert evaluations. Key features include real-time feedback and customizable thresholds for user adaptation. Potential applications encompass fitness training, physical therapy, and sports training. Finally, the paper explores future work possibilities like mobile integration, advanced feedback mechanisms, and machine learning for automatic threshold adjustments. This research offers a valuable tool for squat analysis, empowering users to achieve their fitness goals with proper form and reduced injury risk.
人工智能训练器:基于视频的深蹲分析
这项研究提出了一种基于视频的系统,用于分析人体下蹲动作并提供实时反馈,以改善姿势。该系统利用开源姿势估计库 MediaPipe 来识别深蹲过程中的关键身体关节。通过计算关键关节角度(膝关节屈曲、髋关节屈曲、踝关节背屈),该系统可根据既定的生物力学原理评估下蹲姿势。如果偏离这些原则,就会触发实时反馈信息或视觉提示,引导用户采用最佳深蹲姿势。论文详细介绍了该系统的架构,其中客户端应用程序负责姿势评估和反馈生成。该方法概述了各种下蹲变化的数据收集、集成 MediaPipe 的系统开发,以及通过用户测试与专家评估对比进行的评估。主要功能包括实时反馈和可定制的用户适应阈值。潜在应用包括健身训练、物理治疗和体育训练。最后,本文探讨了未来工作的可能性,如移动集成、高级反馈机制和用于自动调整阈值的机器学习。这项研究为深蹲分析提供了一个有价值的工具,使用户能够以正确的姿势实现健身目标,降低受伤风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信