Large language models in cryptocurrency securities cases: can a GPT model meaningfully assist lawyers?

IF 3.1 2区 社会学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Arianna Trozze, Toby Davies, Bennett Kleinberg
{"title":"Large language models in cryptocurrency securities cases: can a GPT model meaningfully assist lawyers?","authors":"Arianna Trozze,&nbsp;Toby Davies,&nbsp;Bennett Kleinberg","doi":"10.1007/s10506-024-09399-6","DOIUrl":null,"url":null,"abstract":"<div><p>Large Language Models (LLMs) could be a useful tool for lawyers. However, empirical research on their effectiveness in conducting legal tasks is scant. We study securities cases involving cryptocurrencies as one of numerous contexts where AI could support the legal process, studying GPT-3.5’s legal reasoning and ChatGPT’s legal drafting capabilities. We examine whether a) GPT-3.5 can accurately determine which laws are potentially being violated from a fact pattern, and b) whether there is a difference in juror decision-making based on complaints written by a lawyer compared to ChatGPT. We feed fact patterns from real-life cases to GPT-3.5 and evaluate its ability to determine correct potential violations from the scenario and exclude spurious violations. Second, we had mock jurors assess complaints written by ChatGPT and lawyers. GPT-3.5’s legal reasoning skills proved weak, though we expect improvement in future models, particularly given the violations it suggested tended to be correct (it merely missed additional, correct violations). ChatGPT performed better at legal drafting, and jurors’ decisions were not statistically significantly associated with the author of the document upon which they based their decisions. Because GPT-3.5 cannot satisfactorily conduct legal reasoning tasks, it would be unlikely to be able to help lawyers in a meaningful way at this stage. However, ChatGPT’s drafting skills (though, perhaps, still inferior to lawyers) could assist lawyers in providing legal services. Our research is the first to systematically study an LLM’s legal drafting and reasoning capabilities in litigation, as well as in securities law and cryptocurrency-related misconduct.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"33 3","pages":"691 - 737"},"PeriodicalIF":3.1000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10506-024-09399-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-024-09399-6","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Large Language Models (LLMs) could be a useful tool for lawyers. However, empirical research on their effectiveness in conducting legal tasks is scant. We study securities cases involving cryptocurrencies as one of numerous contexts where AI could support the legal process, studying GPT-3.5’s legal reasoning and ChatGPT’s legal drafting capabilities. We examine whether a) GPT-3.5 can accurately determine which laws are potentially being violated from a fact pattern, and b) whether there is a difference in juror decision-making based on complaints written by a lawyer compared to ChatGPT. We feed fact patterns from real-life cases to GPT-3.5 and evaluate its ability to determine correct potential violations from the scenario and exclude spurious violations. Second, we had mock jurors assess complaints written by ChatGPT and lawyers. GPT-3.5’s legal reasoning skills proved weak, though we expect improvement in future models, particularly given the violations it suggested tended to be correct (it merely missed additional, correct violations). ChatGPT performed better at legal drafting, and jurors’ decisions were not statistically significantly associated with the author of the document upon which they based their decisions. Because GPT-3.5 cannot satisfactorily conduct legal reasoning tasks, it would be unlikely to be able to help lawyers in a meaningful way at this stage. However, ChatGPT’s drafting skills (though, perhaps, still inferior to lawyers) could assist lawyers in providing legal services. Our research is the first to systematically study an LLM’s legal drafting and reasoning capabilities in litigation, as well as in securities law and cryptocurrency-related misconduct.

加密货币证券案件中的大语言模型:GPT 模型能否为律师提供有意义的帮助?
大型语言模型(llm)对律师来说可能是一个有用的工具。然而,对其在执行法律任务中的有效性的实证研究却很少。我们研究了涉及加密货币的证券案件,作为人工智能可以支持法律程序的众多背景之一,研究了GPT-3.5的法律推理和ChatGPT的法律起草能力。我们研究了a) GPT-3.5是否可以从事实模式中准确地确定哪些法律可能被违反,以及b)与ChatGPT相比,基于律师撰写的投诉的陪审员决策是否存在差异。我们将现实案例中的事实模式提供给GPT-3.5,并评估其从场景中确定正确的潜在违规行为并排除虚假违规行为的能力。其次,我们让模拟陪审员评估由ChatGPT和律师撰写的投诉。GPT-3.5的法律推理能力被证明很弱,尽管我们预计未来模型会有所改进,特别是考虑到它所建议的违规行为往往是正确的(它只是遗漏了额外的、正确的违规行为)。ChatGPT在法律起草方面表现得更好,陪审员的决定与他们所依据的文件的作者没有统计学上的显著关联。由于GPT-3.5不能令人满意地进行法律推理任务,因此在这个阶段,它不太可能以有意义的方式帮助律师。然而,ChatGPT的起草技巧(虽然,也许,仍然不如律师)可以协助律师提供法律服务。我们的研究首次系统地研究了法学硕士在诉讼以及证券法和加密货币相关不当行为中的法律起草和推理能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
26.80%
发文量
33
期刊介绍: Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law. Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信