Individual Updating Strategies-based Elephant Herding Optimization Algorithm for Effective Load Balancing in Cloud Environments

Q1 Mathematics
Syed Muqthadar Ali, N. Kumaran, G. N. Balaji
{"title":"Individual Updating Strategies-based Elephant Herding Optimization Algorithm for Effective Load Balancing in Cloud Environments","authors":"Syed Muqthadar Ali, N. Kumaran, G. N. Balaji","doi":"10.5815/ijcnis.2024.02.06","DOIUrl":null,"url":null,"abstract":"In this manuscript, an Individual Updating Strategies-based Elephant Herding Optimization Algorithm are proposed to facilitate the effective load balancing (LB) process in cloud computing. Primary goal of proposed Individual Updating Strategies-based Elephant Herding Optimization Algorithm focus on issuing the workloads pertaining to network links by the purpose of preventing over-utilization and under-utilization of the resources. Here, NIUS-EHOA-LB-CE is proposed to exploit the merits of traditional Elephant Herd Optimization algorithm to achieve superior results in all dimensions of cloud computing. In this NIUS-EHOA-LB-CE achieves the allocation of Virtual Machines for the incoming tasks of cloud, when the number of currently processing tasks of a specific VM is less than the cumulative number of tasks. Also, it attains potential load balancing process differences with the help of each individual virtual machine’s processing time and the mean processing time (MPT) incurred by complete virtual machine. Efficacy of the proposed technique activates the Cloudsim platform. Experimental results of the proposed method shows lower Mean Response time 11.6%, 18.4%, 20.34%and 28.1%, lower Mean Execution Time 78.2%, 65.4%, 40.32% and 52.6% compared with existing methods, like Improved Artificial Bee Colony utilizing Monarchy Butterfly Optimization approach for Load Balancing in Cloud Environments (IABC-MBOA-LB-CE), An improved Hybrid Fuzzy-Ant Colony Algorithm Applied to Load Balancing in Cloud Computing Environment (FACOA-LB-CE), Hybrid firefly and Improved Multi-Objective Particle Swarm Optimization for energy efficient LB in Cloud environments (FF-IMOPSO-LB-CE) and A hybrid gray wolf optimization and Particle Swarm Optimization algorithm for load balancing in cloud computing environment (GWO-PSO-LB-CE).","PeriodicalId":36488,"journal":{"name":"International Journal of Computer Network and Information Security","volume":"173 S393","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Network and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijcnis.2024.02.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

In this manuscript, an Individual Updating Strategies-based Elephant Herding Optimization Algorithm are proposed to facilitate the effective load balancing (LB) process in cloud computing. Primary goal of proposed Individual Updating Strategies-based Elephant Herding Optimization Algorithm focus on issuing the workloads pertaining to network links by the purpose of preventing over-utilization and under-utilization of the resources. Here, NIUS-EHOA-LB-CE is proposed to exploit the merits of traditional Elephant Herd Optimization algorithm to achieve superior results in all dimensions of cloud computing. In this NIUS-EHOA-LB-CE achieves the allocation of Virtual Machines for the incoming tasks of cloud, when the number of currently processing tasks of a specific VM is less than the cumulative number of tasks. Also, it attains potential load balancing process differences with the help of each individual virtual machine’s processing time and the mean processing time (MPT) incurred by complete virtual machine. Efficacy of the proposed technique activates the Cloudsim platform. Experimental results of the proposed method shows lower Mean Response time 11.6%, 18.4%, 20.34%and 28.1%, lower Mean Execution Time 78.2%, 65.4%, 40.32% and 52.6% compared with existing methods, like Improved Artificial Bee Colony utilizing Monarchy Butterfly Optimization approach for Load Balancing in Cloud Environments (IABC-MBOA-LB-CE), An improved Hybrid Fuzzy-Ant Colony Algorithm Applied to Load Balancing in Cloud Computing Environment (FACOA-LB-CE), Hybrid firefly and Improved Multi-Objective Particle Swarm Optimization for energy efficient LB in Cloud environments (FF-IMOPSO-LB-CE) and A hybrid gray wolf optimization and Particle Swarm Optimization algorithm for load balancing in cloud computing environment (GWO-PSO-LB-CE).
基于个体更新策略的大象放牧优化算法,实现云环境中的有效负载平衡
本手稿提出了一种基于个体更新策略的大象放牧优化算法,以促进云计算中有效的负载平衡(LB)过程。基于个体更新策略的大象群优化算法的主要目标是通过防止资源的过度利用和利用不足来分配与网络链接相关的工作负载。这里提出的 NIUS-EHOA-LB-CE 利用了传统象群优化算法的优点,在云计算的各个维度上都取得了卓越的效果。其中,NIUS-EHOA-LB-CE 可在特定虚拟机当前处理的任务数少于累计任务数时,为云计算的新任务分配虚拟机。此外,它还借助每个单独虚拟机的处理时间和整个虚拟机产生的平均处理时间(MPT)来实现潜在的负载平衡流程差异。建议的技术激活了 Cloudsim 平台。实验结果表明,与现有方法相比,拟议方法的平均响应时间分别缩短了 11.6%、18.4%、20.34% 和 28.1%,平均执行时间分别缩短了 78.2%、65.4%、40.32% 和 52.6%。与现有方法相比,这些方法的平均执行时间分别降低了 78.2%、65.4%、40.32% 和 52.6%,例如用于云计算环境负载平衡的改进型人工蜂群利用蝴蝶君主制优化方法(IABC-MBOA-LB-CE)、应用于云计算环境负载平衡的改进型混合模糊蚁群算法(FACOA-LB-CE)、混合萤火虫算法和改进的多目标粒子群优化算法(FF-IMOPSO-LB-CE),以及混合灰狼优化算法和粒子群优化算法(GWO-PSO-LB-CE),用于云计算环境中的负载平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信