TDP2 is a regulator of estrogen-responsive oncogene expression

IF 3.4 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
NAR cancer Pub Date : 2024-04-08 DOI:10.1093/narcan/zcae016
N. Manguso, Minhyung Kim, Neeraj Joshi, Md Rasel Al Mahmud, Juan Aldaco, Ryusuke Suzuki, Felipe Cortés-Ledesma, Xiaojiang Cui, Shintaro Yamada, Shunichi Takeda, Armando Giuliano, Sungyong You, Hisashi Tanaka
{"title":"TDP2 is a regulator of estrogen-responsive oncogene expression","authors":"N. Manguso, Minhyung Kim, Neeraj Joshi, Md Rasel Al Mahmud, Juan Aldaco, Ryusuke Suzuki, Felipe Cortés-Ledesma, Xiaojiang Cui, Shintaro Yamada, Shunichi Takeda, Armando Giuliano, Sungyong You, Hisashi Tanaka","doi":"10.1093/narcan/zcae016","DOIUrl":null,"url":null,"abstract":"Abstract With its ligand estrogen, the estrogen receptor (ER) initiates a global transcriptional program, promoting cell growth. This process involves topoisomerase 2 (TOP2), a key protein in resolving topological issues during transcription by cleaving a DNA duplex, passing another duplex through the break, and repairing the break. Recent studies revealed the involvement of various DNA repair proteins in the repair of TOP2-induced breaks, suggesting potential alternative repair pathways in cases where TOP2 is halted after cleavage. However, the contribution of these proteins in ER-induced transcriptional regulation remains unclear. We investigated the role of tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme for the removal of halted TOP2 from the DNA ends, in the estrogen-induced transcriptome using both targeted and global transcription analyses. MYC activation by estrogen, a TOP2-dependent and transient event, became prolonged in the absence of TDP2 in both TDP2-deficient cells and mice. Bulk and single-cell RNA-seq analyses defined MYC and CCND1 as oncogenes whose estrogen response is tightly regulated by TDP2. These results suggest that TDP2 may inherently participate in the repair of estrogen-induced breaks at specific genomic loci, exerting precise control over oncogenic gene expression.","PeriodicalId":94149,"journal":{"name":"NAR cancer","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAR cancer","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1093/narcan/zcae016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract With its ligand estrogen, the estrogen receptor (ER) initiates a global transcriptional program, promoting cell growth. This process involves topoisomerase 2 (TOP2), a key protein in resolving topological issues during transcription by cleaving a DNA duplex, passing another duplex through the break, and repairing the break. Recent studies revealed the involvement of various DNA repair proteins in the repair of TOP2-induced breaks, suggesting potential alternative repair pathways in cases where TOP2 is halted after cleavage. However, the contribution of these proteins in ER-induced transcriptional regulation remains unclear. We investigated the role of tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme for the removal of halted TOP2 from the DNA ends, in the estrogen-induced transcriptome using both targeted and global transcription analyses. MYC activation by estrogen, a TOP2-dependent and transient event, became prolonged in the absence of TDP2 in both TDP2-deficient cells and mice. Bulk and single-cell RNA-seq analyses defined MYC and CCND1 as oncogenes whose estrogen response is tightly regulated by TDP2. These results suggest that TDP2 may inherently participate in the repair of estrogen-induced breaks at specific genomic loci, exerting precise control over oncogenic gene expression.
TDP2 是雌激素反应性癌基因表达的调节器
摘要 雌激素受体(ER)通过其配体雌激素启动全局转录程序,促进细胞生长。这一过程涉及拓扑异构酶 2(TOP2),它是解决转录过程中拓扑问题的一个关键蛋白,其作用是裂解 DNA 双链,使另一个双链通过断裂处并修复断裂。最近的研究发现,多种 DNA 修复蛋白参与了 TOP2 诱导的断裂修复,这表明在 TOP2 在裂解后停止的情况下,可能存在其他修复途径。然而,这些蛋白在ER诱导的转录调控中的贡献仍不清楚。我们利用靶向和全局转录分析研究了酪氨酰-DNA 磷酸二酯酶 2(TDP2)在雌激素诱导的转录组中的作用。在缺乏 TDP2 的细胞和小鼠中,雌激素对 MYC 的活化(一种依赖于 TOP2 的瞬时事件)在缺乏 TDP2 的情况下会延长。大量和单细胞RNA-seq分析确定了MYC和CCND1是其雌激素反应受TDP2严格调控的癌基因。这些结果表明,TDP2 可能本质上参与了雌激素诱导的特定基因组位点断裂的修复,从而对致癌基因的表达进行精确控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信