A Hybrid Intrusion Detection System to Mitigate Biomedical Malicious Nodes

Q1 Mathematics
Mohammed Abdessamad Goumidi, E. Zigh, N. Hadj-Said, A. Ali-Pacha
{"title":"A Hybrid Intrusion Detection System to Mitigate Biomedical Malicious Nodes","authors":"Mohammed Abdessamad Goumidi, E. Zigh, N. Hadj-Said, A. Ali-Pacha","doi":"10.5815/ijcnis.2024.02.10","DOIUrl":null,"url":null,"abstract":"This paper proposes an intrusion detection system to prevent malicious node attacks that may result in failure links in wireless body area networks. The system utilizes a combination of Optimized Convolutional Neural Networks and Support Vector Machine techniques to classify nodes as malicious or not, and links as failure or not. In case of detection, the system employs a trust-based routing strategy to isolate malicious nodes or failure links and ensure a secure path. Furthermore, sensitive data is encrypted using a modified RSA encryption algorithm. The experimental results demonstrate the improved network performance in terms of data rate, delay, packet delivery ratio, energy consumption, and network security, by providing effective protection against malicious node attacks and failure links. The proposed system achieves the highest classification rate and sensitivity, surpassing similar methods in all evaluation metrics.","PeriodicalId":36488,"journal":{"name":"International Journal of Computer Network and Information Security","volume":"241 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Network and Information Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijcnis.2024.02.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an intrusion detection system to prevent malicious node attacks that may result in failure links in wireless body area networks. The system utilizes a combination of Optimized Convolutional Neural Networks and Support Vector Machine techniques to classify nodes as malicious or not, and links as failure or not. In case of detection, the system employs a trust-based routing strategy to isolate malicious nodes or failure links and ensure a secure path. Furthermore, sensitive data is encrypted using a modified RSA encryption algorithm. The experimental results demonstrate the improved network performance in terms of data rate, delay, packet delivery ratio, energy consumption, and network security, by providing effective protection against malicious node attacks and failure links. The proposed system achieves the highest classification rate and sensitivity, surpassing similar methods in all evaluation metrics.
缓解生物医学恶意节点的混合入侵检测系统
本文提出了一种入侵检测系统,以防止恶意节点攻击可能导致无线体域网链路失效。该系统结合使用优化卷积神经网络和支持向量机技术,对节点进行恶意与否分类,对链路进行故障与否分类。在检测到恶意节点和故障链路时,系统会采用基于信任的路由策略来隔离恶意节点或故障链路,并确保路径安全。此外,敏感数据采用改进的 RSA 加密算法进行加密。实验结果表明,通过有效防范恶意节点攻击和故障链路,该系统在数据传输速率、延迟、数据包交付率、能耗和网络安全等方面的网络性能都得到了改善。所提出的系统实现了最高的分类率和灵敏度,在所有评价指标上都超过了同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信