Sally L Baxter, Christopher Longhurst, Marlene Millen, Amy M Sitapati, Ming Tai-Seale
{"title":"Generative artificial intelligence responses to patient messages in the electronic health record: early lessons learned","authors":"Sally L Baxter, Christopher Longhurst, Marlene Millen, Amy M Sitapati, Ming Tai-Seale","doi":"10.1093/jamiaopen/ooae028","DOIUrl":null,"url":null,"abstract":"Abstract Background Electronic health record (EHR)-based patient messages can contribute to burnout. Messages with a negative tone are particularly challenging to address. In this perspective, we describe our initial evaluation of large language model (LLM)-generated responses to negative EHR patient messages and contend that using LLMs to generate initial drafts may be feasible, although refinement will be needed. Methods A retrospective sample (n = 50) of negative patient messages was extracted from a health system EHR, de-identified, and inputted into an LLM (ChatGPT). Qualitative analyses were conducted to compare LLM responses to actual care team responses. Results Some LLM-generated draft responses varied from human responses in relational connection, informational content, and recommendations for next steps. Occasionally, the LLM draft responses could have potentially escalated emotionally charged conversations. Conclusion Further work is needed to optimize the use of LLMs for responding to negative patient messages in the EHR.","PeriodicalId":36278,"journal":{"name":"JAMIA Open","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JAMIA Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jamiaopen/ooae028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Background Electronic health record (EHR)-based patient messages can contribute to burnout. Messages with a negative tone are particularly challenging to address. In this perspective, we describe our initial evaluation of large language model (LLM)-generated responses to negative EHR patient messages and contend that using LLMs to generate initial drafts may be feasible, although refinement will be needed. Methods A retrospective sample (n = 50) of negative patient messages was extracted from a health system EHR, de-identified, and inputted into an LLM (ChatGPT). Qualitative analyses were conducted to compare LLM responses to actual care team responses. Results Some LLM-generated draft responses varied from human responses in relational connection, informational content, and recommendations for next steps. Occasionally, the LLM draft responses could have potentially escalated emotionally charged conversations. Conclusion Further work is needed to optimize the use of LLMs for responding to negative patient messages in the EHR.