Management Analysis Method of Multivariate Time Series Anomaly Detection in Financial Risk Assessment

Yongshan Zhang, Zhiyun Jiang, Cong Peng, Xiumei Zhu, Gang Wang
{"title":"Management Analysis Method of Multivariate Time Series Anomaly Detection in Financial Risk Assessment","authors":"Yongshan Zhang, Zhiyun Jiang, Cong Peng, Xiumei Zhu, Gang Wang","doi":"10.4018/joeuc.342094","DOIUrl":null,"url":null,"abstract":"The significance of financial risk lies in its impact on economic stability and individual/institutional financial security. Effective risk management is crucial for market confidence and crisis prevention. Current methods for multivariate time series anomaly detection have limitations in adaptability and generalization. To address this, we propose an innovative approach integrating contrastive learning and Generative Adversarial Networks (GANs). We use geometric distribution masking for data augmentation to enhance dataset diversity. Within the GAN framework, we train a Transformer-based autoencoder to capture normal point distributions. We include contrastive loss in the discriminator to ensure robust generalization. Rigorous experiments on four real-world datasets show that our method effectively mitigates overfitting and outperforms state-of-the-art approaches. This enhances anomaly identification in risk management, paving the way for deep learning in finance, and offering insights for future research and practical use.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"11 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.342094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The significance of financial risk lies in its impact on economic stability and individual/institutional financial security. Effective risk management is crucial for market confidence and crisis prevention. Current methods for multivariate time series anomaly detection have limitations in adaptability and generalization. To address this, we propose an innovative approach integrating contrastive learning and Generative Adversarial Networks (GANs). We use geometric distribution masking for data augmentation to enhance dataset diversity. Within the GAN framework, we train a Transformer-based autoencoder to capture normal point distributions. We include contrastive loss in the discriminator to ensure robust generalization. Rigorous experiments on four real-world datasets show that our method effectively mitigates overfitting and outperforms state-of-the-art approaches. This enhances anomaly identification in risk management, paving the way for deep learning in finance, and offering insights for future research and practical use.
金融风险评估中多元时间序列异常检测的管理分析方法
金融风险的重要性在于其对经济稳定和个人/机构金融安全的影响。有效的风险管理对于市场信心和危机预防至关重要。目前的多变量时间序列异常检测方法在适应性和泛化方面存在局限性。为解决这一问题,我们提出了一种将对比学习和生成对抗网络(GANs)相结合的创新方法。我们使用几何分布掩码进行数据扩增,以增强数据集的多样性。在 GAN 框架内,我们训练基于变换器的自动编码器来捕捉正态点分布。我们在判别器中加入了对比损失,以确保强大的泛化能力。在四个真实世界数据集上进行的严格实验表明,我们的方法能有效缓解过拟合,并优于最先进的方法。这增强了风险管理中的异常识别能力,为金融领域的深度学习铺平了道路,并为未来的研究和实际应用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信