Fast polynomial multiplication using matrix multiplication accelerators with applications to NTRU on Apple M1/M3 SoCs

Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López Hernandez
{"title":"Fast polynomial multiplication using matrix multiplication accelerators with applications to NTRU on Apple M1/M3 SoCs","authors":"Décio Luiz Gazzoni Filho, Guilherme Brandão, Julio López Hernandez","doi":"10.62056/a3txommol","DOIUrl":null,"url":null,"abstract":"Efficient polynomial multiplication routines are critical to the performance of lattice-based post-quantum cryptography (PQC). As PQC standards only recently started to emerge, CPUs still lack specialized instructions to accelerate such routines. Meanwhile, deep learning has grown immeasurably in importance. Its workloads call for teraflops-level of processing power for linear algebra operations, mainly matrix multiplication. Computer architects have responded by introducing ISA extensions, coprocessors and special-purpose cores to accelerate such operations. In particular, Apple ships an undocumented matrix-multiplication coprocessor, AMX, in hundreds of millions of mobile phones, tablets and personal computers. Our work repurposes AMX to implement polynomial multiplication and applies it to the NTRU cryptosystem, setting new speed records on the Apple M1 and M3 systems-on-chip (SoCs): polynomial multiplication, key generation, encapsulation and decapsulation are sped up by \n \n 1.54\n \n –\n \n 3.07\n ×\n \n , \n \n 1.08\n \n –\n \n 1.33\n ×\n \n , \n \n 1.11\n \n –\n \n 1.50\n ×\n \n and \n \n 1.20\n \n –\n \n 1.98\n ×\n \n , respectively, over the previous state-of-the-art.","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"75 8","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62056/a3txommol","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Efficient polynomial multiplication routines are critical to the performance of lattice-based post-quantum cryptography (PQC). As PQC standards only recently started to emerge, CPUs still lack specialized instructions to accelerate such routines. Meanwhile, deep learning has grown immeasurably in importance. Its workloads call for teraflops-level of processing power for linear algebra operations, mainly matrix multiplication. Computer architects have responded by introducing ISA extensions, coprocessors and special-purpose cores to accelerate such operations. In particular, Apple ships an undocumented matrix-multiplication coprocessor, AMX, in hundreds of millions of mobile phones, tablets and personal computers. Our work repurposes AMX to implement polynomial multiplication and applies it to the NTRU cryptosystem, setting new speed records on the Apple M1 and M3 systems-on-chip (SoCs): polynomial multiplication, key generation, encapsulation and decapsulation are sped up by 1.54 – 3.07 × , 1.08 – 1.33 × , 1.11 – 1.50 × and 1.20 – 1.98 × , respectively, over the previous state-of-the-art.
使用矩阵乘法加速器进行快速多项式乘法,并在 Apple M1/M3 SoC 上应用于 NTRU
高效的多项式乘法例程对基于晶格的后量子加密技术(PQC)的性能至关重要。由于 PQC 标准最近才开始出现,CPU 仍然缺乏加速此类例程的专用指令。与此同时,深度学习的重要性已不可估量。其工作负载要求线性代数运算(主要是矩阵乘法)具有 teraflops 级的处理能力。为此,计算机架构师推出了 ISA 扩展、协处理器和专用内核,以加速此类操作。其中,苹果公司在数以亿计的手机、平板电脑和个人电脑中使用了一种未记录的矩阵乘法协处理器 AMX。我们的工作是重新利用 AMX 来实现多项式乘法,并将其应用于 NTRU 密码系统,从而在苹果 M1 和 M3 片上系统 (SoC) 上创造了新的速度记录:多项式乘法、密钥生成、封装和解封装分别比以前的先进水平加快了 1.54 - 3.07 倍、1.08 - 1.33 倍、1.11 - 1.50 倍和 1.20 - 1.98 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信