Diksha Diksha, Alex Amato, V. Spagnuolo, Graeme McGhee, M. Chicoine, Caspar Clark, Stuart Hill, J. Hough, Ross Johnston, Remy Keil, Nena Mavridi, S. Reid, Sheila Rowan, Timon Schapals, F. Schiettekatte, Simon Tait, Iain W Martin, J. Steinlechner
{"title":"Optical properties of germania and titania at 1064 nm and at 1550 nm","authors":"Diksha Diksha, Alex Amato, V. Spagnuolo, Graeme McGhee, M. Chicoine, Caspar Clark, Stuart Hill, J. Hough, Ross Johnston, Remy Keil, Nena Mavridi, S. Reid, Sheila Rowan, Timon Schapals, F. Schiettekatte, Simon Tait, Iain W Martin, J. Steinlechner","doi":"10.1088/1361-6382/ad3c8c","DOIUrl":null,"url":null,"abstract":"\n One of the main noise sources in current gravitational wave detectors is the thermal noise of the high-reflectivity coatings on the main interferometer optics. Coating thermal noise is dominated by the mechanical loss of the high-refractive index material within the coating stacks, Ta2O5 mixed with TiO2. For upgrades to room-temperature detectors, a mixture of GeO2 and TiO2 is an interesting alternative candidate coating material. While the rather low refractive index of GeO2 increases with increasing TiO2 content, a higher TiO2 content results in a lower threshold temperature before heat treatment leads to crystallisation, and potentially to a degradation of optical properties. For future cryogenic detectors, on the other hand, a higher TiO2 content is beneficial as the TiO2 suppresses the low-temperature mechanical loss peak of GeO2. In this paper, we present the optical properties of coatings -- produced by plasma-assisted ion-beam evaporation -- with high TiO2 content at 1550nm, a laser wavelength considered for cryogenic gravitational-wave detectors, as a function of heat-treatment temperature. For comparison, the absorption was also measured of pure GeO2. Furthermore, results at the currently-used wavelength of 1064nm are presented.","PeriodicalId":505126,"journal":{"name":"Classical and Quantum Gravity","volume":"137 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad3c8c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
One of the main noise sources in current gravitational wave detectors is the thermal noise of the high-reflectivity coatings on the main interferometer optics. Coating thermal noise is dominated by the mechanical loss of the high-refractive index material within the coating stacks, Ta2O5 mixed with TiO2. For upgrades to room-temperature detectors, a mixture of GeO2 and TiO2 is an interesting alternative candidate coating material. While the rather low refractive index of GeO2 increases with increasing TiO2 content, a higher TiO2 content results in a lower threshold temperature before heat treatment leads to crystallisation, and potentially to a degradation of optical properties. For future cryogenic detectors, on the other hand, a higher TiO2 content is beneficial as the TiO2 suppresses the low-temperature mechanical loss peak of GeO2. In this paper, we present the optical properties of coatings -- produced by plasma-assisted ion-beam evaporation -- with high TiO2 content at 1550nm, a laser wavelength considered for cryogenic gravitational-wave detectors, as a function of heat-treatment temperature. For comparison, the absorption was also measured of pure GeO2. Furthermore, results at the currently-used wavelength of 1064nm are presented.