{"title":"Secure Multi-Party Linear Algebra with Perfect Correctness","authors":"Jules Maire, Damien Vergnaud","doi":"10.62056/avzojbkrz","DOIUrl":null,"url":null,"abstract":"We present new secure multi-party computation protocols for linear algebra over a finite field, which improve the state-of-the-art in terms of security. We look at the case of unconditional security with perfect correctness, i.e., information-theoretic security without errors. We notably propose an expected constant-round protocol for solving systems of m linear equations in n variables over Fq with expected complexity O(k n^2.5 + k m) (where complexity is measured in terms of the number of secure multiplications required) with k > m(m+n)+1. The previous proposals were not error-free: known protocols can indeed fail and thus reveal information with probability Omega(poly(m)/q). Our protocols are simple and rely on existing computer-algebra techniques, notably the Preparata-Sarwate algorithm, a simple but poorly known “baby-step giant-step” method for computing the characteristic polynomial of a matrix, and techniques due to Mulmuley for error-free linear algebra in positive characteristic.","PeriodicalId":508905,"journal":{"name":"IACR Cryptol. ePrint Arch.","volume":"199 1","pages":"508"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IACR Cryptol. ePrint Arch.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.62056/avzojbkrz","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present new secure multi-party computation protocols for linear algebra over a finite field, which improve the state-of-the-art in terms of security. We look at the case of unconditional security with perfect correctness, i.e., information-theoretic security without errors. We notably propose an expected constant-round protocol for solving systems of m linear equations in n variables over Fq with expected complexity O(k n^2.5 + k m) (where complexity is measured in terms of the number of secure multiplications required) with k > m(m+n)+1. The previous proposals were not error-free: known protocols can indeed fail and thus reveal information with probability Omega(poly(m)/q). Our protocols are simple and rely on existing computer-algebra techniques, notably the Preparata-Sarwate algorithm, a simple but poorly known “baby-step giant-step” method for computing the characteristic polynomial of a matrix, and techniques due to Mulmuley for error-free linear algebra in positive characteristic.