Non-inertial interpretation of the Dirac oscillator

Michele Marrocco
{"title":"Non-inertial interpretation of the Dirac oscillator","authors":"Michele Marrocco","doi":"10.1088/1751-8121/ad3c81","DOIUrl":null,"url":null,"abstract":"\n Non-inertial physics is seldom considered in quantum mechanics and this contrasts with the ubiquity of non-inertial reference frames. Here, we show an application to the Dirac oscillator which provides a fundamental model of relativistic quantum mechanics. The model emerges from a term linearly dependent on spatial coordinates added to the momentum of the free-particle Dirac Hamiltonian. The definition generates peculiar features (mutating vacuum energy, non-Hermitian momentum, accidental degeneracies of the spectrum, etc.). We interpret these anomalies in terms of inertial effects. The demonstration is based on the decoupling of the Dirac equation from the stereographic projection that maps the 3D geometry of the dynamical problem to the complex plane. The decoupling shows that the fundamental mechanical model underpinning the Dirac oscillator reduces to the representation of the oscillator in the rotating reference frame attached to the orbital angular momentum. The resulting Coriolis-like contribution to the Hamiltonian accounts for the peculiarities of the model (mutating vacuum energy, form of the non-minimal correction to the momentum, classical intrinsic spin and gain of its quantum value, accidental degeneracies of the energy spectrum, supersymmetric potential). The suggested interpretation has an interdisciplinary character where stereographic geometry, classical physics of the Coriolis effect and quantum physics of Dirac particles contribute to the definition of one of the few exactly soluble models of relativistic quantum mechanics.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad3c81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-inertial physics is seldom considered in quantum mechanics and this contrasts with the ubiquity of non-inertial reference frames. Here, we show an application to the Dirac oscillator which provides a fundamental model of relativistic quantum mechanics. The model emerges from a term linearly dependent on spatial coordinates added to the momentum of the free-particle Dirac Hamiltonian. The definition generates peculiar features (mutating vacuum energy, non-Hermitian momentum, accidental degeneracies of the spectrum, etc.). We interpret these anomalies in terms of inertial effects. The demonstration is based on the decoupling of the Dirac equation from the stereographic projection that maps the 3D geometry of the dynamical problem to the complex plane. The decoupling shows that the fundamental mechanical model underpinning the Dirac oscillator reduces to the representation of the oscillator in the rotating reference frame attached to the orbital angular momentum. The resulting Coriolis-like contribution to the Hamiltonian accounts for the peculiarities of the model (mutating vacuum energy, form of the non-minimal correction to the momentum, classical intrinsic spin and gain of its quantum value, accidental degeneracies of the energy spectrum, supersymmetric potential). The suggested interpretation has an interdisciplinary character where stereographic geometry, classical physics of the Coriolis effect and quantum physics of Dirac particles contribute to the definition of one of the few exactly soluble models of relativistic quantum mechanics.
狄拉克振荡器的非惯性解释
量子力学很少考虑非惯性物理学,这与非惯性参照系的普遍存在形成了鲜明对比。在这里,我们展示了狄拉克振荡器的应用,它为相对论量子力学提供了一个基本模型。该模型源于自由粒子狄拉克哈密顿动量中添加的一个与空间坐标线性相关的项。这一定义产生了奇特的特征(变异的真空能、非赫米特动量、频谱的意外退化等)。我们用惯性效应来解释这些反常现象。演示基于狄拉克方程与立体投影的解耦,立体投影将动力学问题的三维几何映射到复平面。解耦结果表明,支撑狄拉克振荡器的基本机械模型可还原为振荡器在旋转参照系中的表示,该参照系与轨道角动量相连。由此产生的对哈密顿的类似科里奥利的贡献解释了该模型的特殊性(变异的真空能量、对动量的非最小修正形式、经典本征自旋及其量子值的增益、能谱的意外退化、超对称势)。建议的解释具有跨学科特点,立体几何、科里奥利效应的经典物理学和狄拉克粒子的量子物理学都有助于定义相对论量子力学中少数几个完全可解的模型之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信