Reproducible machine learning research in mental workload classification using EEG

Güliz Demirezen, Tugba Taskaya Temizel, A. Brouwer
{"title":"Reproducible machine learning research in mental workload classification using EEG","authors":"Güliz Demirezen, Tugba Taskaya Temizel, A. Brouwer","doi":"10.3389/fnrgo.2024.1346794","DOIUrl":null,"url":null,"abstract":"This study addresses concerns about reproducibility in scientific research, focusing on the use of electroencephalography (EEG) and machine learning to estimate mental workload. We established guidelines for reproducible machine learning research using EEG and used these to assess the current state of reproducibility in mental workload modeling. We first started by summarizing the current state of reproducibility efforts in machine learning and in EEG. Next, we performed a systematic literature review on Scopus, Web of Science, ACM Digital Library, and Pubmed databases to find studies about reproducibility in mental workload prediction using EEG. All of this previous work was used to formulate guidelines, which we structured along the widely recognized Cross-Industry Standard Process for Data Mining (CRISP-DM) framework. By using these guidelines, researchers can ensure transparency and comprehensiveness of their methodologies, therewith enhancing collaboration and knowledge-sharing within the scientific community, and enhancing the reliability, usability and significance of EEG and machine learning techniques in general. A second systematic literature review extracted machine learning studies that used EEG to estimate mental workload. We evaluated the reproducibility status of these studies using our guidelines. We highlight areas studied and overlooked and identify current challenges for reproducibility. Our main findings include limitations on reporting performance on unseen test data, open sharing of data and code, and reporting of resources essential for training and inference processes.","PeriodicalId":207447,"journal":{"name":"Frontiers in Neuroergonomics","volume":"7 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroergonomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnrgo.2024.1346794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses concerns about reproducibility in scientific research, focusing on the use of electroencephalography (EEG) and machine learning to estimate mental workload. We established guidelines for reproducible machine learning research using EEG and used these to assess the current state of reproducibility in mental workload modeling. We first started by summarizing the current state of reproducibility efforts in machine learning and in EEG. Next, we performed a systematic literature review on Scopus, Web of Science, ACM Digital Library, and Pubmed databases to find studies about reproducibility in mental workload prediction using EEG. All of this previous work was used to formulate guidelines, which we structured along the widely recognized Cross-Industry Standard Process for Data Mining (CRISP-DM) framework. By using these guidelines, researchers can ensure transparency and comprehensiveness of their methodologies, therewith enhancing collaboration and knowledge-sharing within the scientific community, and enhancing the reliability, usability and significance of EEG and machine learning techniques in general. A second systematic literature review extracted machine learning studies that used EEG to estimate mental workload. We evaluated the reproducibility status of these studies using our guidelines. We highlight areas studied and overlooked and identify current challenges for reproducibility. Our main findings include limitations on reporting performance on unseen test data, open sharing of data and code, and reporting of resources essential for training and inference processes.
利用脑电图进行心理工作量分类的可重复机器学习研究
本研究关注科学研究中的可重复性问题,重点是使用脑电图(EEG)和机器学习估算心理工作量。我们为使用脑电图的可重现机器学习研究制定了指导方针,并利用这些指导方针来评估心理工作量建模的可重现性现状。我们首先总结了机器学习和脑电图研究的可重复性现状。接下来,我们在 Scopus、Web of Science、ACM Digital Library 和 Pubmed 数据库中进行了系统的文献综述,以查找有关使用脑电图进行心理工作量预测的可重复性研究。所有这些前期工作都被用来制定指南,我们按照广受认可的数据挖掘跨行业标准流程(CRISP-DM)框架来构建指南。通过使用这些指南,研究人员可以确保其方法的透明度和全面性,从而加强科学界的合作和知识共享,提高脑电图和机器学习技术的可靠性、可用性和重要性。第二篇系统性文献综述摘录了使用脑电图估算心理工作量的机器学习研究。我们利用指南对这些研究的可重复性进行了评估。我们强调了已研究和被忽视的领域,并指出了当前可重复性面临的挑战。我们的主要发现包括在报告未见测试数据的性能、开放共享数据和代码以及报告训练和推理过程所需的资源方面存在的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信