An improved state space model predictive control for linear systems with input disturbance

IF 1.7 4区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Jian Zhang, Ying Xu, Yiran Li
{"title":"An improved state space model predictive control for linear systems with input disturbance","authors":"Jian Zhang, Ying Xu, Yiran Li","doi":"10.1177/01423312241241361","DOIUrl":null,"url":null,"abstract":"This paper presents an improved model predictive control (MPC) algorithm for linear systems with input disturbance. Based on the developed extended non-minimum state space input disturbance (ENMSS-ID) model, the input disturbance model structure is incorporated into the MPC framework and the objective function of the MPC optimization problem is improved to weigh the system output increments. This enables the algorithm simultaneously to achieve good input disturbance rejection performance for systems with known input disturbances and reduce the controllers’ sensitivity to model mismatch. An existing optimal estimation method is introduced to estimate the input disturbance, together with the proposed strategy to improve estimation convergence. Offset-free property is also proven to show the steady-state performance of the designed control scheme. Finally, two benchmark plants are studied to illustrate the effectiveness and advantages of the proposed algorithm.","PeriodicalId":49426,"journal":{"name":"Transactions of the Institute of Measurement and Control","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Institute of Measurement and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/01423312241241361","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents an improved model predictive control (MPC) algorithm for linear systems with input disturbance. Based on the developed extended non-minimum state space input disturbance (ENMSS-ID) model, the input disturbance model structure is incorporated into the MPC framework and the objective function of the MPC optimization problem is improved to weigh the system output increments. This enables the algorithm simultaneously to achieve good input disturbance rejection performance for systems with known input disturbances and reduce the controllers’ sensitivity to model mismatch. An existing optimal estimation method is introduced to estimate the input disturbance, together with the proposed strategy to improve estimation convergence. Offset-free property is also proven to show the steady-state performance of the designed control scheme. Finally, two benchmark plants are studied to illustrate the effectiveness and advantages of the proposed algorithm.
带输入干扰线性系统的改进状态空间模型预测控制
本文针对具有输入干扰的线性系统提出了一种改进的模型预测控制(MPC)算法。基于所开发的扩展非最小状态空间输入干扰(ENMSS-ID)模型,输入干扰模型结构被纳入了 MPC 框架,MPC 优化问题的目标函数也得到了改进,以权衡系统输出增量。这使得该算法能够同时为已知输入干扰的系统实现良好的输入干扰抑制性能,并降低控制器对模型不匹配的敏感性。该算法引入了现有的最优估算方法来估算输入干扰,并提出了改进估算收敛性的策略。此外,还证明了无偏移特性,以显示所设计控制方案的稳态性能。最后,研究了两个基准工厂,以说明所提算法的有效性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
16.70%
发文量
203
审稿时长
3.4 months
期刊介绍: Transactions of the Institute of Measurement and Control is a fully peer-reviewed international journal. The journal covers all areas of applications in instrumentation and control. Its scope encompasses cutting-edge research and development, education and industrial applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信