{"title":"OpenAnnotateApi: Python and R packages to efficiently annotate and analyze chromatin accessibility of genomic regions","authors":"Zijing Gao, Rui Jiang, Shengquan Chen","doi":"10.1093/bioadv/vbae055","DOIUrl":null,"url":null,"abstract":"Abstract Summary Chromatin accessibility serves as a critical measurement of physical contact between nuclear macromolecules and DNA sequence, providing valuable insights into the comprehensive landscape of regulatory mechanisms, thus we previously developed the OpenAnnotate web server. However, as an increasing number of epigenomic analysis software tools emerged, web-based annotation often faced limitations and inconveniences when integrated into these software pipelines. To address these issues, we here develop two software packages named OpenAnnotatePy and OpenAnnotateR. In addition to web-based functionalities, these packages encompass supplementary features, including the capability for simultaneous annotation across multiple cell types, advanced searching of systems, tissues and cell types, and converting the result to the data structure of mainstream tools. Moreover, we applied the packages to various scenarios, including cell type revealing, regulatory element prediction, and integration into mainstream single-cell ATAC-seq analysis pipelines including EpiScanpy, Signac, and ArchR. We anticipate that OpenAnnotateApi will significantly facilitate the deciphering of gene regulatory mechanisms, and offer crucial assistance in the field of epigenomic studies. Availability and implementation OpenAnnotateApi for R is available at https://github.com/ZjGaothu/OpenAnnotateR and for Python is available at https://github.com/ZjGaothu/OpenAnnotatePy.","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Summary Chromatin accessibility serves as a critical measurement of physical contact between nuclear macromolecules and DNA sequence, providing valuable insights into the comprehensive landscape of regulatory mechanisms, thus we previously developed the OpenAnnotate web server. However, as an increasing number of epigenomic analysis software tools emerged, web-based annotation often faced limitations and inconveniences when integrated into these software pipelines. To address these issues, we here develop two software packages named OpenAnnotatePy and OpenAnnotateR. In addition to web-based functionalities, these packages encompass supplementary features, including the capability for simultaneous annotation across multiple cell types, advanced searching of systems, tissues and cell types, and converting the result to the data structure of mainstream tools. Moreover, we applied the packages to various scenarios, including cell type revealing, regulatory element prediction, and integration into mainstream single-cell ATAC-seq analysis pipelines including EpiScanpy, Signac, and ArchR. We anticipate that OpenAnnotateApi will significantly facilitate the deciphering of gene regulatory mechanisms, and offer crucial assistance in the field of epigenomic studies. Availability and implementation OpenAnnotateApi for R is available at https://github.com/ZjGaothu/OpenAnnotateR and for Python is available at https://github.com/ZjGaothu/OpenAnnotatePy.