Improving the Representation of Moisture and Convective Instability in Baroclinic-Wave Channel Simulations

IF 2.8 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
D. J. Lloveras, D. Durran
{"title":"Improving the Representation of Moisture and Convective Instability in Baroclinic-Wave Channel Simulations","authors":"D. J. Lloveras, D. Durran","doi":"10.1175/mwr-d-23-0210.1","DOIUrl":null,"url":null,"abstract":"\nWe present an improved approach to generating moist baroclinically unstable background states for ƒ-plane-channel simulations via potential-vorticity (PV) inversion. Previous studies specified PV distributions with constant values in the troposphere and the stratosphere, but this produces unrealistic static-stability profiles that decrease sharply with height in the troposphere. Adding moisture to such environments can yield unrealistically large values of convective available potential energy (CAPE) even for reasonable relative-humidity (RH) distributions. In our modified approach, we specify a PV distribution that increases with height in the troposphere and the stratosphere, yielding background states with more realistic values of static stability and CAPE. This modification produces environments that are better suited for representing moist processes, namely deep convection, in idealized extratropical-cyclone simulations. Also, we present a method for introducing moisture that preserves a specified RH distribution while maintaining hydrostatic balance. Our approach allows for a large degree of control over the initial conditions, as background states with different jet strengths and shapes, average temperatures, moisture contents, or horizontal shears can easily be obtained without changing the underlying PV formula and inadvertently producing unreasonable values of static stability or CAPE. We demonstrate the characteristics of idealized extratropical cyclones developing in our background states by adding localized perturbations that represent an upper-level trough passing over a low-level frontal zone. In particular, we illustrate the impacts of horizontal shear, moisture, and grid spacing on baroclinic-wave development.","PeriodicalId":18824,"journal":{"name":"Monthly Weather Review","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monthly Weather Review","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/mwr-d-23-0210.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We present an improved approach to generating moist baroclinically unstable background states for ƒ-plane-channel simulations via potential-vorticity (PV) inversion. Previous studies specified PV distributions with constant values in the troposphere and the stratosphere, but this produces unrealistic static-stability profiles that decrease sharply with height in the troposphere. Adding moisture to such environments can yield unrealistically large values of convective available potential energy (CAPE) even for reasonable relative-humidity (RH) distributions. In our modified approach, we specify a PV distribution that increases with height in the troposphere and the stratosphere, yielding background states with more realistic values of static stability and CAPE. This modification produces environments that are better suited for representing moist processes, namely deep convection, in idealized extratropical-cyclone simulations. Also, we present a method for introducing moisture that preserves a specified RH distribution while maintaining hydrostatic balance. Our approach allows for a large degree of control over the initial conditions, as background states with different jet strengths and shapes, average temperatures, moisture contents, or horizontal shears can easily be obtained without changing the underlying PV formula and inadvertently producing unreasonable values of static stability or CAPE. We demonstrate the characteristics of idealized extratropical cyclones developing in our background states by adding localized perturbations that represent an upper-level trough passing over a low-level frontal zone. In particular, we illustrate the impacts of horizontal shear, moisture, and grid spacing on baroclinic-wave development.
改进巴罗克林波通道模拟中水汽和对流不稳定性的表示方法
我们提出了一种改进的方法,通过位势涡度(PV)反演为ƒ-平面通道模拟生成潮湿的气压不稳定背景状态。以前的研究指定了对流层和平流层中恒定值的 PV 分布,但这会产生不切实际的静态稳定性剖面,这种剖面会随着对流层高度的增加而急剧下降。在这样的环境中加入湿气,即使相对湿度(RH)分布合理,对流可用势能(CAPE)值也会大得不切实际。在我们的修正方法中,我们指定了对流层和平流层中随高度增加而增加的 PV 分布,从而产生了静态稳定性和 CAPE 值更切合实际的背景状态。这种修改产生的环境更适合在理想化的外热带气旋模拟中表现潮湿过程,即深层对流。此外,我们还提出了一种引入湿气的方法,这种方法在保持静水平衡的同时,还能保持指定的相对湿度分布。我们的方法可以在很大程度上控制初始条件,因为可以很容易地获得具有不同喷流强度和形状、平均温度、湿度含量或水平切变的背景状态,而不会改变基本的 PV 公式,也不会无意中产生不合理的静态稳定度或 CAPE 值。我们通过添加局部扰动来演示在我们的背景状态下发展的理想化外热带气旋的特征,这些扰动代表了经过低层锋面带的高层低槽。我们特别说明了水平切变、湿度和网格间距对条纹波发展的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Monthly Weather Review
Monthly Weather Review 地学-气象与大气科学
CiteScore
6.40
自引率
12.50%
发文量
186
审稿时长
3-6 weeks
期刊介绍: Monthly Weather Review (MWR) (ISSN: 0027-0644; eISSN: 1520-0493) publishes research relevant to the analysis and prediction of observed atmospheric circulations and physics, including technique development, data assimilation, model validation, and relevant case studies. This research includes numerical and data assimilation techniques that apply to the atmosphere and/or ocean environments. MWR also addresses phenomena having seasonal and subseasonal time scales.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信