The application of impulse oscillometry system based on machine learning algorithm in the diagnosis of chronic obstructive pulmonary disease.

IF 2.3 4区 医学 Q3 BIOPHYSICS
Dongfang Zhao, Xiuying Mou, Yueqi Li, Yicheng Yao, L. Du, Zhenfeng Li, Peng Wang, Xiaopan Li, Xiaoran Li, Xianxiang Chen, Yong Li, Jingen Xia, Zhen Fang
{"title":"The application of impulse oscillometry system based on machine learning algorithm in the diagnosis of chronic obstructive pulmonary disease.","authors":"Dongfang Zhao, Xiuying Mou, Yueqi Li, Yicheng Yao, L. Du, Zhenfeng Li, Peng Wang, Xiaopan Li, Xiaoran Li, Xianxiang Chen, Yong Li, Jingen Xia, Zhen Fang","doi":"10.1088/1361-6579/ad3d24","DOIUrl":null,"url":null,"abstract":"OBJECTIVE\nDiagnosing chronic obstructive pulmonary disease (COPD) using Impulse Oscillometry (IOS) is challenging due to the high level of clinical expertise it demands from doctors , which limits the clinical application of IOS in screening. The primary aim of this study is to develop a COPD diagnostic model based on machine learning algorithms using IOS test results. Approach:Feature selection was conducted to identify the optimal subset of features from the original feature set, which significantly enhanced the classifier's performance. Additionally, secondary features area of reactance (AX) were derived from the original features based on clinical theory, further enhancing the performance of the classifier. The performance of the model was analyzed and validated using various classifiers and hyperparameter settings to identify the optimal classifier. We collected 528 clinical data examples from the China-Japan Friendship Hospital for training and validating the model. Main results:The proposed model achieved reasonably accurate diagnostic results in the clinical data (accuracy=0.920, specificity=0.941, precision=0.875, recall=0.875). Significance:The results of this study demonstrate that the proposed classifier model, feature selection method, and derived secondary feature AX provide significant auxiliary support in reducing the requirement for clinical experience in COPD diagnosis using IOS. .","PeriodicalId":20047,"journal":{"name":"Physiological measurement","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological measurement","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6579/ad3d24","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

OBJECTIVE Diagnosing chronic obstructive pulmonary disease (COPD) using Impulse Oscillometry (IOS) is challenging due to the high level of clinical expertise it demands from doctors , which limits the clinical application of IOS in screening. The primary aim of this study is to develop a COPD diagnostic model based on machine learning algorithms using IOS test results. Approach:Feature selection was conducted to identify the optimal subset of features from the original feature set, which significantly enhanced the classifier's performance. Additionally, secondary features area of reactance (AX) were derived from the original features based on clinical theory, further enhancing the performance of the classifier. The performance of the model was analyzed and validated using various classifiers and hyperparameter settings to identify the optimal classifier. We collected 528 clinical data examples from the China-Japan Friendship Hospital for training and validating the model. Main results:The proposed model achieved reasonably accurate diagnostic results in the clinical data (accuracy=0.920, specificity=0.941, precision=0.875, recall=0.875). Significance:The results of this study demonstrate that the proposed classifier model, feature selection method, and derived secondary feature AX provide significant auxiliary support in reducing the requirement for clinical experience in COPD diagnosis using IOS. .
基于机器学习算法的脉冲振荡测量系统在慢性阻塞性肺病诊断中的应用。
目的:使用脉冲振荡仪(IOS)诊断慢性阻塞性肺病(COPD)具有挑战性,因为它对医生的临床专业知识水平要求很高,这限制了 IOS 在临床筛查中的应用。本研究的主要目的是利用 IOS 测试结果,基于机器学习算法开发 COPD 诊断模型。方法:通过特征选择,从原始特征集中找出最佳特征子集,从而显著提高分类器的性能。此外,还根据临床理论从原始特征中导出了电抗区域(AX)二级特征,进一步提高了分类器的性能。我们使用各种分类器和超参数设置对模型的性能进行了分析和验证,以确定最佳分类器。我们从中日友好医院收集了 528 个临床数据实例,用于训练和验证模型。主要结果:提出的模型在临床数据中取得了相当准确的诊断结果(准确率=0.920,特异性=0.941,精确度=0.875,召回率=0.875)。意义:本研究结果表明,所提出的分类器模型、特征选择方法和衍生的二级特征 AX 为利用 IOS 诊断慢性阻塞性肺病提供了重要的辅助支持,降低了对临床经验的要求。.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological measurement
Physiological measurement 生物-工程:生物医学
CiteScore
5.50
自引率
9.40%
发文量
124
审稿时长
3 months
期刊介绍: Physiological Measurement publishes papers about the quantitative assessment and visualization of physiological function in clinical research and practice, with an emphasis on the development of new methods of measurement and their validation. Papers are published on topics including: applied physiology in illness and health electrical bioimpedance, optical and acoustic measurement techniques advanced methods of time series and other data analysis biomedical and clinical engineering in-patient and ambulatory monitoring point-of-care technologies novel clinical measurements of cardiovascular, neurological, and musculoskeletal systems. measurements in molecular, cellular and organ physiology and electrophysiology physiological modeling and simulation novel biomedical sensors, instruments, devices and systems measurement standards and guidelines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信