Ruwini S. K. Ekanayake , Victor A. Streltsov , Stephen P. Best , Christopher T. Chantler , V. K. Peterson (Editor)
{"title":"Nanostructure and dynamics of N-truncated copper amyloid-β peptides from advanced X-ray absorption fine structure","authors":"Ruwini S. K. Ekanayake , Victor A. Streltsov , Stephen P. Best , Christopher T. Chantler , V. K. Peterson (Editor)","doi":"10.1107/S2052252524001830","DOIUrl":null,"url":null,"abstract":"<div><p>An X-ray absorption spectroscopy electrochemical cell was used to collect high-quality X-ray absorption spectroscopy measurements of N-truncated Cu:amyloid-β (Cu:Aβ) samples under near-physiological conditions. The geometry of binding sites for the copper binding in Aβ<sub>4–8/12/16</sub> and the ability of these peptides to perform redox cycles in a manner that might produce toxicity in human brains were determined.</p></div><div><p>An X-ray absorption spectroscopy (XAS) electrochemical cell was used to collect high-quality XAS measurements of N-truncated Cu:amyloid-β (Cu:Aβ) samples under near-physiological conditions. N-truncated Cu:Aβ peptide complexes contribute to oxidative stress and neurotoxicity in Alzheimer’s patients’ brains. However, the redox properties of copper in different Aβ peptide sequences are inconsistent. Therefore, the geometry of binding sites for the copper binding in Aβ<sub>4–8/12/16</sub> was determined using novel advanced extended X-ray absorption fine structure (EXAFS) analysis. This enables these peptides to perform redox cycles in a manner that might produce toxicity in human brains. Fluorescence XAS measurements were corrected for systematic errors including defective-pixel data, monochromator glitches and dispersion of pixel spectra. Experimental uncertainties at each data point were measured explicitly from the point-wise variance of corrected pixel measurements. The copper-binding environments of Aβ<sub>4–8/12/16</sub> were precisely determined by fitting XAS measurements with propagated experimental uncertainties, advanced analysis and hypothesis testing, providing a mechanism to pursue many similarly complex questions in bioscience. The low-temperature XAS measurements here determine that Cu<sup>II</sup> is bound to the first amino acids in the high-affinity amino-terminal copper and nickel (ATCUN) binding motif with an oxygen in a tetragonal pyramid geometry in the Aβ<sub>4–8/12/16</sub> peptides. Room-temperature XAS electrochemical-cell measurements observe metal reduction in the Aβ<sub>4–16</sub> peptide. Robust investigations of XAS provide structural details of Cu<sup>II</sup> binding with a very different <em>bis</em>-His motif and a water oxygen in a quasi-tetrahedral geometry. Oxidized XAS measurements of Aβ<sub>4–12/16</sub> imply that both Cu<sup>II</sup> and Cu<sup>III</sup> are accommodated in an ATCUN-like binding site. Hypotheses for these Cu<sup>I</sup>, Cu<sup>II</sup> and Cu<sup>III</sup> geometries were proven and disproven using the novel data and statistical analysis including <em>F</em> tests. Structural parameters were determined with an accuracy some tenfold better than literature claims of past work. A new protocol was also developed using EXAFS data analysis for monitoring radiation damage. This gives a template for advanced analysis of complex biosystems.</p></div>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":"11 3","pages":"Pages 325-346"},"PeriodicalIF":2.9000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2052252524000320","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An X-ray absorption spectroscopy electrochemical cell was used to collect high-quality X-ray absorption spectroscopy measurements of N-truncated Cu:amyloid-β (Cu:Aβ) samples under near-physiological conditions. The geometry of binding sites for the copper binding in Aβ4–8/12/16 and the ability of these peptides to perform redox cycles in a manner that might produce toxicity in human brains were determined.
An X-ray absorption spectroscopy (XAS) electrochemical cell was used to collect high-quality XAS measurements of N-truncated Cu:amyloid-β (Cu:Aβ) samples under near-physiological conditions. N-truncated Cu:Aβ peptide complexes contribute to oxidative stress and neurotoxicity in Alzheimer’s patients’ brains. However, the redox properties of copper in different Aβ peptide sequences are inconsistent. Therefore, the geometry of binding sites for the copper binding in Aβ4–8/12/16 was determined using novel advanced extended X-ray absorption fine structure (EXAFS) analysis. This enables these peptides to perform redox cycles in a manner that might produce toxicity in human brains. Fluorescence XAS measurements were corrected for systematic errors including defective-pixel data, monochromator glitches and dispersion of pixel spectra. Experimental uncertainties at each data point were measured explicitly from the point-wise variance of corrected pixel measurements. The copper-binding environments of Aβ4–8/12/16 were precisely determined by fitting XAS measurements with propagated experimental uncertainties, advanced analysis and hypothesis testing, providing a mechanism to pursue many similarly complex questions in bioscience. The low-temperature XAS measurements here determine that CuII is bound to the first amino acids in the high-affinity amino-terminal copper and nickel (ATCUN) binding motif with an oxygen in a tetragonal pyramid geometry in the Aβ4–8/12/16 peptides. Room-temperature XAS electrochemical-cell measurements observe metal reduction in the Aβ4–16 peptide. Robust investigations of XAS provide structural details of CuII binding with a very different bis-His motif and a water oxygen in a quasi-tetrahedral geometry. Oxidized XAS measurements of Aβ4–12/16 imply that both CuII and CuIII are accommodated in an ATCUN-like binding site. Hypotheses for these CuI, CuII and CuIII geometries were proven and disproven using the novel data and statistical analysis including F tests. Structural parameters were determined with an accuracy some tenfold better than literature claims of past work. A new protocol was also developed using EXAFS data analysis for monitoring radiation damage. This gives a template for advanced analysis of complex biosystems.
期刊介绍:
IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr).
The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.