Real-Time Vehicle and Lane Detection using Modified OverFeat CNN: A Comprehensive Study on Robustness and Performance in Autonomous Driving

Monowar Hossain Saikat, Sonjoy Paul, Kazi Toriqul Islam, Tanjida Tahmina, Md Shahriar Abdullah, Touhid Imam
{"title":"Real-Time Vehicle and Lane Detection using Modified OverFeat CNN: A Comprehensive Study on Robustness and Performance in Autonomous Driving","authors":"Monowar Hossain Saikat, Sonjoy Paul, Kazi Toriqul Islam, Tanjida Tahmina, Md Shahriar Abdullah, Touhid Imam","doi":"10.32996/jcsts.2024.6.2.4","DOIUrl":null,"url":null,"abstract":"This examination researches the use of profound learning methods, explicitly utilizing Convolutional Brain Organizations (CNNs), for ongoing recognition of vehicles and path limits in roadway driving situations. The study investigates the performance of a modified Over Feat CNN architecture by making use of a comprehensive dataset that includes annotated frames captured by a variety of sensors, including cameras, LIDAR, radar, and GPS. The framework shows heartiness in identifying vehicles and anticipating path shapes in 3D while accomplishing functional rates of north of 10 Hz on different GPU setups. Vehicle bounding box predictions with high accuracy, resistance to occlusions, and efficient lane boundary identification are key findings. Quiet, the exploration underlines the likely materialness of this framework in the space of independent driving, introducing a promising road for future improvements in this field.","PeriodicalId":509154,"journal":{"name":"Journal of Computer Science and Technology Studies","volume":"23 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Technology Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32996/jcsts.2024.6.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This examination researches the use of profound learning methods, explicitly utilizing Convolutional Brain Organizations (CNNs), for ongoing recognition of vehicles and path limits in roadway driving situations. The study investigates the performance of a modified Over Feat CNN architecture by making use of a comprehensive dataset that includes annotated frames captured by a variety of sensors, including cameras, LIDAR, radar, and GPS. The framework shows heartiness in identifying vehicles and anticipating path shapes in 3D while accomplishing functional rates of north of 10 Hz on different GPU setups. Vehicle bounding box predictions with high accuracy, resistance to occlusions, and efficient lane boundary identification are key findings. Quiet, the exploration underlines the likely materialness of this framework in the space of independent driving, introducing a promising road for future improvements in this field.
使用改进的 OverFeat CNN 实时检测车辆和车道:自动驾驶中的鲁棒性和性能综合研究
本研究采用深度学习方法,明确利用卷积脑组织(CNN),对道路驾驶情况下的车辆和路径限制进行持续识别。该研究利用一个综合数据集,其中包括由各种传感器(包括摄像头、激光雷达、雷达和全球定位系统)捕获的注释帧,对修改后的过胖 CNN 架构的性能进行了研究。该框架在识别车辆和预测三维路径形状方面表现出色,同时在不同的 GPU 设置上实现了 10 Hz 以上的功能速率。高精度的车辆边界框预测、抗遮挡性和高效的车道边界识别是主要发现。此外,该研究还强调了这一框架在独立驾驶领域的实用性,为该领域未来的改进指明了方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信