Hongjie Dong, Fa Peng, Y. Zhang, Yuan Zhou
求助PDF
{"title":"Jacobian determinants for nonlinear gradient of planar ∞-harmonic functions and applications","authors":"Hongjie Dong, Fa Peng, Y. Zhang, Yuan Zhou","doi":"10.1515/crelle-2024-0016","DOIUrl":null,"url":null,"abstract":"\n <jats:p>We introduce a distributional Jacobian determinant <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo rspace=\"0.167em\">det</m:mo>\n <m:mrow>\n <m:mi>D</m:mi>\n <m:mo></m:mo>\n <m:msub>\n <m:mi>V</m:mi>\n <m:mi>β</m:mi>\n </m:msub>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mrow>\n <m:mi>D</m:mi>\n <m:mo></m:mo>\n <m:mi>v</m:mi>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0016_ineq_0001.png\" />\n <jats:tex-math>\\det DV_{\\beta}(Dv)</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> in dimension two for the nonlinear complex gradient <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mrow>\n <m:msub>\n <m:mi>V</m:mi>\n <m:mi>β</m:mi>\n </m:msub>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:mrow>\n <m:mi>D</m:mi>\n <m:mo></m:mo>\n <m:mi>v</m:mi>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n <m:mo>=</m:mo>\n <m:mrow>\n <m:msup>\n <m:mrow>\n <m:mo stretchy=\"false\">|</m:mo>\n <m:mrow>\n <m:mi>D</m:mi>\n <m:mo></m:mo>\n <m:mi>v</m:mi>\n </m:mrow>\n <m:mo stretchy=\"false\">|</m:mo>\n </m:mrow>\n <m:mi>β</m:mi>\n </m:msup>\n <m:mo></m:mo>\n <m:mrow>\n <m:mo stretchy=\"false\">(</m:mo>\n <m:msub>\n <m:mi>v</m:mi>\n <m:msub>\n <m:mi>x</m:mi>\n <m:mn>1</m:mn>\n </m:msub>\n </m:msub>\n <m:mo>,</m:mo>\n <m:mrow>\n <m:mo>−</m:mo>\n <m:msub>\n <m:mi>v</m:mi>\n <m:msub>\n <m:mi>x</m:mi>\n <m:mn>2</m:mn>\n </m:msub>\n </m:msub>\n </m:mrow>\n <m:mo stretchy=\"false\">)</m:mo>\n </m:mrow>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0016_ineq_0002.png\" />\n <jats:tex-math>V_{\\beta}(Dv)=\\lvert Dv\\rvert^{\\beta}(v_{x_{1}},-v_{x_{2}})</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> for any <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>β</m:mi>\n <m:mo>></m:mo>\n <m:mrow>\n <m:mo>−</m:mo>\n <m:mn>1</m:mn>\n </m:mrow>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0016_ineq_0003.png\" />\n <jats:tex-math>\\beta>-1</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>, whenever <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>v</m:mi>\n <m:mo>∈</m:mo>\n <m:msubsup>\n <m:mi>W</m:mi>\n <m:mi>loc</m:mi>\n <m:mrow>\n <m:mn>1</m:mn>\n <m:mo>,</m:mo>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msubsup>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0016_ineq_0004.png\" />\n <jats:tex-math>v\\in W^{1\\smash{,}2}_{\\mathrm{loc}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula> and <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mrow>\n <m:mi>β</m:mi>\n <m:mo></m:mo>\n <m:msup>\n <m:mrow>\n <m:mo stretchy=\"false\">|</m:mo>\n <m:mrow>\n <m:mi>D</m:mi>\n <m:mo></m:mo>\n <m:mi>v</m:mi>\n </m:mrow>\n <m:mo stretchy=\"false\">|</m:mo>\n </m:mrow>\n <m:mrow>\n <m:mn>1</m:mn>\n <m:mo>+</m:mo>\n <m:mi>β</m:mi>\n </m:mrow>\n </m:msup>\n </m:mrow>\n <m:mo>∈</m:mo>\n <m:msubsup>\n <m:mi>W</m:mi>\n <m:mi>loc</m:mi>\n <m:mrow>\n <m:mn>1</m:mn>\n <m:mo>,</m:mo>\n <m:mn>2</m:mn>\n </m:mrow>\n </m:msubsup>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0016_ineq_0005.png\" />\n <jats:tex-math>\\beta\\lvert Dv\\rvert^{1+\\beta}\\in W^{1\\smash{,}2}_{\\mathrm{loc}}</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>.\nThis is new when <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mi>β</m:mi>\n <m:mo>≠</m:mo>\n <m:mn>0</m:mn>\n </m:mrow>\n </m:math>\n <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_crelle-2024-0016_ineq_0006.png\" />\n <jats:tex-math>\\beta\\neq 0</jats:tex-math>\n </jats:alternatives>\n </jats:inline-formula>.\nGiven any planar ∞-harmonic function 𝑢, we show that such distributional Jacobian determinant <jats:inline-formula>\n <jats:alternatives>\n <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\">\n <m:mrow>\n <m:mo rspace=\"0.167em\">det</m:mo>\n ","PeriodicalId":508691,"journal":{"name":"Journal für die reine und angewandte Mathematik (Crelles Journal)","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal für die reine und angewandte Mathematik (Crelles Journal)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/crelle-2024-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
平面∞谐函数非线性梯度的雅各布行列式及其应用
我们引入一个分布雅各布行列式 det D V β ( D v ) det DV_{\beta}(Dv) 为非线性复梯度 V β ( D v ) = | D v | β ( v x 1 , - v x 2 ) 的二维 DV_{\beta}(Dv) V_{\beta}(Dv)=\lvert Dv\rvert^{\beta}(v_{x_{1}},-v_{x_{2}}) for any β > - 1 \beta>-1 , whenever v ∈ W loc 1 , 2 v\in W^{1\smash{,}2}_{\mathrm{loc}} and β | D v | 1
本文章由计算机程序翻译,如有差异,请以英文原文为准。