Inequalities involving the harmonic-arithmetic index

IF 0.9 Q2 MATHEMATICS
Akbar Ali, Emina Milovanović, Stefan Stankov, Marjan Matejić, Igor Milovanović
{"title":"Inequalities involving the harmonic-arithmetic index","authors":"Akbar Ali,&nbsp;Emina Milovanović,&nbsp;Stefan Stankov,&nbsp;Marjan Matejić,&nbsp;Igor Milovanović","doi":"10.1007/s13370-024-01183-8","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a simple graph with vertex set <span>\\(V=\\{v_{1},v_{2},\\ldots ,v_{n}\\}\\)</span>. The notion <span>\\(i\\sim j\\)</span> is used to indicate that the vertices <span>\\(v_{i}\\)</span> and <span>\\(v_{j}\\)</span> of <i>G</i> are adjacent. For a vertex <span>\\(v_{i}\\in V\\)</span>, let <span>\\(d_{i}\\)</span> be the degree of <span>\\(v_{i}\\)</span>. The harmonic-arithmetic (HA) index of <i>G</i> is defined as <span>\\(HA(G) =\\sum _{i\\sim j} 4d_id_j(d_i+d_j)^{-2}\\)</span>. In this paper, a considerable number of inequalities involving the HA index and other topological indices are derived. For every obtained inequality, all the graphs that satisfy the equality case are also characterized.</p></div>","PeriodicalId":46107,"journal":{"name":"Afrika Matematika","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Matematika","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s13370-024-01183-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a simple graph with vertex set \(V=\{v_{1},v_{2},\ldots ,v_{n}\}\). The notion \(i\sim j\) is used to indicate that the vertices \(v_{i}\) and \(v_{j}\) of G are adjacent. For a vertex \(v_{i}\in V\), let \(d_{i}\) be the degree of \(v_{i}\). The harmonic-arithmetic (HA) index of G is defined as \(HA(G) =\sum _{i\sim j} 4d_id_j(d_i+d_j)^{-2}\). In this paper, a considerable number of inequalities involving the HA index and other topological indices are derived. For every obtained inequality, all the graphs that satisfy the equality case are also characterized.

Abstract Image

涉及谐波算术指数的不等式
让 G 是一个简单图,其顶点集为(V={v_{1},v_{2},\ldots ,v_{n}\})。\(i\sim j\) 这个概念用来表示 G 的顶点 \(v_{i}\) 和 \(v_{j}\) 是相邻的。对于顶点 \(v_{i}\in V\), 让 \(d_{i}\) 是 \(v_{i}\) 的度数。G 的谐波算术(HA)指数定义为:\(HA(G) =\sum _{i\sim j} 4d_id_j(d_i+d_j)^{-2}\).本文推导了大量涉及 HA 指数和其他拓扑指数的不等式。对于每一个求得的不等式,所有满足相等情况的图形也都被表征出来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Afrika Matematika
Afrika Matematika MATHEMATICS-
CiteScore
2.00
自引率
9.10%
发文量
96
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信