A combined Liouville integrable hierarchy associated with a fourth-order matrix spectral problem

Wen-Xiu Ma
{"title":"A combined Liouville integrable hierarchy associated with a fourth-order matrix spectral problem","authors":"Wen-Xiu Ma","doi":"10.1088/1572-9494/ad3dd9","DOIUrl":null,"url":null,"abstract":"\n This paper aims to discuss a fourth-order matrix spectral problem involving four potentials and to generate an associated Liouville integrable hierarchy via the zero curvature formulation. A bi-Hamiltonian formulation is furnished by applying the trace identity and a recursion operator is explicitly worked out, which exhibits the Liouville integrability of each model in the resulting hierarchy. Two specific examples, consisting of novel generalized combined nonlinear Schroedinger equations and modified Korteweg-de Vries equations, are given.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad3dd9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to discuss a fourth-order matrix spectral problem involving four potentials and to generate an associated Liouville integrable hierarchy via the zero curvature formulation. A bi-Hamiltonian formulation is furnished by applying the trace identity and a recursion operator is explicitly worked out, which exhibits the Liouville integrability of each model in the resulting hierarchy. Two specific examples, consisting of novel generalized combined nonlinear Schroedinger equations and modified Korteweg-de Vries equations, are given.
与四阶矩阵谱问题相关的组合刘维尔可积分层次结构
本文旨在讨论一个涉及四个势的四阶矩阵谱问题,并通过零曲率公式生成一个相关的刘维尔可积分层次结构。通过应用迹同一性,本文提出了一个双哈密顿公式,并明确计算出一个递归算子,该算子显示了所产生的层次结构中每个模型的Liouville可积分性。文中给出了两个具体例子,包括新颖的广义组合非线性薛定谔方程和修正的 Korteweg-de Vries 方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信