Predictive Modeling of Fire Incidence Using Deep Neural Networks

Fire Pub Date : 2024-04-12 DOI:10.3390/fire7040136
C. Ku, Chih-Yu Liu
{"title":"Predictive Modeling of Fire Incidence Using Deep Neural Networks","authors":"C. Ku, Chih-Yu Liu","doi":"10.3390/fire7040136","DOIUrl":null,"url":null,"abstract":"To achieve successful prevention of fire incidents originating from human activities, it is imperative to possess a thorough understanding. This paper introduces a machine learning approach, specifically utilizing deep neural networks (DNN), to develop predictive models for fire occurrence in Keelung City, Taiwan. It investigates ten factors across demographic, architectural, and economic domains through spatial analysis and thematic maps generated from geographic information system data. These factors are then integrated as inputs for the DNN model. Through 50 iterations, performance indices including the coefficient of determination (R2), root mean square error (RMSE), variance accounted for (VAF), prediction interval (PI), mean absolute error (MAE), weighted index (WI), weighted mean absolute percentage error (WMAPE), Nash–Sutcliffe efficiency (NS), and the ratio of performance to deviation (RPD) are computed, with average values of 0.89, 7.30 × 10−2, 89.21, 1.63, 4.90 × 10−2, 0.97, 2.92 × 10−1, 0.88, and 4.84, respectively. The model’s predictions, compared with historical data, demonstrate its efficacy. Additionally, this study explores the impact of various urban renewal strategies using the DNN model, highlighting the significant influence of economic factors on fire incidence. This underscores the importance of economic factors in mitigating fire incidents and emphasizes their consideration in urban renewal planning.","PeriodicalId":508952,"journal":{"name":"Fire","volume":"9 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fire7040136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve successful prevention of fire incidents originating from human activities, it is imperative to possess a thorough understanding. This paper introduces a machine learning approach, specifically utilizing deep neural networks (DNN), to develop predictive models for fire occurrence in Keelung City, Taiwan. It investigates ten factors across demographic, architectural, and economic domains through spatial analysis and thematic maps generated from geographic information system data. These factors are then integrated as inputs for the DNN model. Through 50 iterations, performance indices including the coefficient of determination (R2), root mean square error (RMSE), variance accounted for (VAF), prediction interval (PI), mean absolute error (MAE), weighted index (WI), weighted mean absolute percentage error (WMAPE), Nash–Sutcliffe efficiency (NS), and the ratio of performance to deviation (RPD) are computed, with average values of 0.89, 7.30 × 10−2, 89.21, 1.63, 4.90 × 10−2, 0.97, 2.92 × 10−1, 0.88, and 4.84, respectively. The model’s predictions, compared with historical data, demonstrate its efficacy. Additionally, this study explores the impact of various urban renewal strategies using the DNN model, highlighting the significant influence of economic factors on fire incidence. This underscores the importance of economic factors in mitigating fire incidents and emphasizes their consideration in urban renewal planning.
利用深度神经网络对火灾发生率进行预测建模
要成功预防源于人类活动的火灾事故,就必须对其有透彻的了解。本文介绍了一种机器学习方法,特别是利用深度神经网络(DNN)来开发台湾基隆市火灾发生的预测模型。通过地理信息系统数据生成的空间分析和专题地图,本文调查了人口、建筑和经济领域的十个因素。然后将这些因素整合为 DNN 模型的输入。通过 50 次迭代,计算出的性能指标包括判定系数 (R2)、均方根误差 (RMSE)、方差占比 (VAF)、预测区间 (PI)、平均绝对误差 (MAE)、加权指数 (WI)、加权平均绝对百分比误差 (WMAPE)、Nash-Sutcliffe 效率 (NS) 和性能与偏差比 (RPD),平均值分别为 0.89、7.30 × 10-2、89.21、1.63、4.90 × 10-2、0.97、2.92 × 10-1、0.88 和 4.84。该模型的预测结果与历史数据相比较,证明了其有效性。此外,本研究还利用 DNN 模型探讨了各种城市更新战略的影响,强调了经济因素对火灾发生率的重要影响。这凸显了经济因素在减少火灾事故方面的重要性,并强调了在城市更新规划中对经济因素的考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信