{"title":"Performance Comparison of Conventional and Biopolymer-modified Asphalt Mixtures for Airport Pavement","authors":"Ratna Yuniarti","doi":"10.14525/jjce.v18i2.04","DOIUrl":null,"url":null,"abstract":"Raising the temperature of airport pavement softens its surface, leading to rutting or thermal cracking. As aircraft manufacturers lean toward heavier planes with higher tire pressures, challenges arise. To tackle these problems, incorporating polymers like high-density polyethylene into asphalt binders has emerged as a solution. This study investigates biopolymer-modified asphalt, blending conventional asphalt with highdensity polyethylene and pine resin. This study aims to compare the performance of asphalt mixtures using both conventional and biopolymer-modified asphalt binders. Various tests‒physical, Fourier transform infrared, energy dispersive X-ray, dynamic shear rheometer, volumetric properties, Marshall stability, retained stability, indirect tensile strength and Cantabro loss-were conducted. The results highlighted that integrating pine resin and high-density polyethylene increased the performance grade (PG) of the conventional asphalt from PG 64 to PG 82. Asphalt mixtures using biopolymer-modified binders exhibited superior stability, stiffness and resistance to moisture damage compared to those with conventional asphalt. These properties aligned with the specifications outlined in Item P-401 of the Federal Aviation Administration Advisory Circular 150/5370-10H. Keywords: Pine resin, High-density polyethylene, Biopolymer-modified asphalt, Performance grade 64, Performance grade 82","PeriodicalId":51814,"journal":{"name":"Jordan Journal of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14525/jjce.v18i2.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Raising the temperature of airport pavement softens its surface, leading to rutting or thermal cracking. As aircraft manufacturers lean toward heavier planes with higher tire pressures, challenges arise. To tackle these problems, incorporating polymers like high-density polyethylene into asphalt binders has emerged as a solution. This study investigates biopolymer-modified asphalt, blending conventional asphalt with highdensity polyethylene and pine resin. This study aims to compare the performance of asphalt mixtures using both conventional and biopolymer-modified asphalt binders. Various tests‒physical, Fourier transform infrared, energy dispersive X-ray, dynamic shear rheometer, volumetric properties, Marshall stability, retained stability, indirect tensile strength and Cantabro loss-were conducted. The results highlighted that integrating pine resin and high-density polyethylene increased the performance grade (PG) of the conventional asphalt from PG 64 to PG 82. Asphalt mixtures using biopolymer-modified binders exhibited superior stability, stiffness and resistance to moisture damage compared to those with conventional asphalt. These properties aligned with the specifications outlined in Item P-401 of the Federal Aviation Administration Advisory Circular 150/5370-10H. Keywords: Pine resin, High-density polyethylene, Biopolymer-modified asphalt, Performance grade 64, Performance grade 82
期刊介绍:
I am very pleased and honored to be appointed as an Editor-in-Chief of the Jordan Journal of Civil Engineering which enjoys an excellent reputation, both locally and internationally. Since development is the essence of life, I hope to continue developing this distinguished Journal, building on the effort of all the Editors-in-Chief and Editorial Board Members as well as Advisory Boards of the Journal since its establishment about a decade ago. I will do my best to focus on publishing high quality diverse articles and move forward in the indexing issue of the Journal.