C. Shen, W. Zheng, B. Guo, Y. Ding, Dalong Chen, X. Ai, F. Xue, Y. Zhong, Nengchao Wang, Biao Shen, Bing-biao Xiao, Z. Chen, Yuan Pan
{"title":"Cross-tokamak Disruption Prediction based on domain adaptation","authors":"C. Shen, W. Zheng, B. Guo, Y. Ding, Dalong Chen, X. Ai, F. Xue, Y. Zhong, Nengchao Wang, Biao Shen, Bing-biao Xiao, Z. Chen, Yuan Pan","doi":"10.1088/1741-4326/ad3e12","DOIUrl":null,"url":null,"abstract":"\n The high acquisition cost and the significant demand for disruptive discharges for data-driven disruption prediction models in future tokamaks pose an inherent contradiction in disruption prediction research. In this paper, we demonstrated a novel approach to predict disruption in a future tokamak using only a few discharges. The approach aims to predict disruption by finding a feature space that is universal to all tokamak. The first step is to use the existing understanding of physics to extract physics-guided features from the diagnostic signals of each tokamak, called physics-guided feature extraction (PGFE). The second step is to align a few data from the future tokamak (target domain) and a large amount of data from existing tokamak (source domain) based on a domain adaptation algorithm called CORrelation ALignment (CORAL). It is the first attempt at applying domain adaptation in the task of cross-tokamak disruption prediction. PGFE has been successfully applied in J-TEXT to predict disruption with excellent performance. PGFE can also reduce the data volume requirements due to extracting the less device-specific features, thereby establishing a solid foundation for cross-tokamak disruption prediction. We have further improved CORAL (supervised CORAL, S-CORAL) to enhance its appropriateness in feature alignment for the disruption prediction task. To simulate the existing and future tokamak case, we selected J-TEXT as the existing tokamak and EAST as the future tokamak, which has a large gap in the ranges of plasma parameters. The utilization of the S-CORAL improves the disruption prediction performance on future tokamak. Through interpretable analysis, we discovered that the learned knowledge of the disruption prediction model through this approach exhibits more similarities to the model trained on large data volumes of future tokamak. This approach provides a light, interpretable and few data-required way by aligning features to predict disruption using small data volume from the future tokamak.","PeriodicalId":503481,"journal":{"name":"Nuclear Fusion","volume":"11 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-4326/ad3e12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The high acquisition cost and the significant demand for disruptive discharges for data-driven disruption prediction models in future tokamaks pose an inherent contradiction in disruption prediction research. In this paper, we demonstrated a novel approach to predict disruption in a future tokamak using only a few discharges. The approach aims to predict disruption by finding a feature space that is universal to all tokamak. The first step is to use the existing understanding of physics to extract physics-guided features from the diagnostic signals of each tokamak, called physics-guided feature extraction (PGFE). The second step is to align a few data from the future tokamak (target domain) and a large amount of data from existing tokamak (source domain) based on a domain adaptation algorithm called CORrelation ALignment (CORAL). It is the first attempt at applying domain adaptation in the task of cross-tokamak disruption prediction. PGFE has been successfully applied in J-TEXT to predict disruption with excellent performance. PGFE can also reduce the data volume requirements due to extracting the less device-specific features, thereby establishing a solid foundation for cross-tokamak disruption prediction. We have further improved CORAL (supervised CORAL, S-CORAL) to enhance its appropriateness in feature alignment for the disruption prediction task. To simulate the existing and future tokamak case, we selected J-TEXT as the existing tokamak and EAST as the future tokamak, which has a large gap in the ranges of plasma parameters. The utilization of the S-CORAL improves the disruption prediction performance on future tokamak. Through interpretable analysis, we discovered that the learned knowledge of the disruption prediction model through this approach exhibits more similarities to the model trained on large data volumes of future tokamak. This approach provides a light, interpretable and few data-required way by aligning features to predict disruption using small data volume from the future tokamak.