Chemical Vapor Deposition of Elemental Crystallogen Thin Films

Pierre Tomasini
{"title":"Chemical Vapor Deposition of Elemental Crystallogen Thin Films","authors":"Pierre Tomasini","doi":"10.1149/2162-8777/ad3e2f","DOIUrl":null,"url":null,"abstract":"\n A consolidation of the fundamentals of elemental crystallogen chemical vapor deposition (CVD) is a necessity in view of the extensive evidence accumulated over the last few decades. An in-depth understanding of deposition mechanisms via hydrides asks for a discerning understanding of molecular hydrogen dissociative adsorption, precursor thermal decomposition, and CVD growth rates. With those, a groundbreaking paradigm shift comes to light. GR activation energy E(GR) fingerprints the surface energy. SE ≈ 2E(GR) / (aa), where SE is surface energy, E(GR) activation energy, a lattice parameter. Hydride precursor thermal decomposition consistency with the corresponding solid growth kinetics is demonstrated. Heterogeneous TD kinetics captures a solid deposition and not a gas phase molecular reaction. Thermodynamic equilibrium is achieved during the heterogeneous thermal decomposition of silicon precursors. The popular split between mass-transfer and kinetic regimes is not supported by evidence. Three mechanisms are apparent. The first is controlled by a Si–H bond dissociation energy. The second is controlled by an H–H bond dissociation energy. The last is controlled by a Si–Si bond dissociation energy as lattice sites are sealed off with Si–H bonds.","PeriodicalId":504734,"journal":{"name":"ECS Journal of Solid State Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Journal of Solid State Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2162-8777/ad3e2f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A consolidation of the fundamentals of elemental crystallogen chemical vapor deposition (CVD) is a necessity in view of the extensive evidence accumulated over the last few decades. An in-depth understanding of deposition mechanisms via hydrides asks for a discerning understanding of molecular hydrogen dissociative adsorption, precursor thermal decomposition, and CVD growth rates. With those, a groundbreaking paradigm shift comes to light. GR activation energy E(GR) fingerprints the surface energy. SE ≈ 2E(GR) / (aa), where SE is surface energy, E(GR) activation energy, a lattice parameter. Hydride precursor thermal decomposition consistency with the corresponding solid growth kinetics is demonstrated. Heterogeneous TD kinetics captures a solid deposition and not a gas phase molecular reaction. Thermodynamic equilibrium is achieved during the heterogeneous thermal decomposition of silicon precursors. The popular split between mass-transfer and kinetic regimes is not supported by evidence. Three mechanisms are apparent. The first is controlled by a Si–H bond dissociation energy. The second is controlled by an H–H bond dissociation energy. The last is controlled by a Si–Si bond dissociation energy as lattice sites are sealed off with Si–H bonds.
元素结晶源薄膜的化学气相沉积
鉴于过去几十年来积累的大量证据,有必要对元素晶原化学气相沉积(CVD)的基本原理进行整合。要深入了解氢化物的沉积机理,就必须对分子氢离解吸附、前驱体热分解和 CVD 生长率有清晰的认识。有了这些,一个突破性的范式转变就会出现。GR活化能 E(GR) 是表面能的指纹。SE ≈ 2E(GR) / (aa),其中 SE 为表面能,E(GR) 为活化能,为晶格参数。氢化物前驱体的热分解与相应的固体生长动力学相一致。异质 TD 动力学捕捉到的是固体沉积而非气相分子反应。在硅前驱体的异相热分解过程中实现了热力学平衡。目前流行的将质量传递和动力学机制割裂开来的观点没有证据支持。有三种机制是显而易见的。第一种由硅-H 键解离能控制。第二种受 H-H 键解离能控制。最后一种机制受 Si-Si 键解离能控制,因为晶格位点被 Si-H 键封闭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信